• Title/Summary/Keyword: Rotary Implement

Search Result 19, Processing Time 0.033 seconds

STUDY ON A CONTACT TYPE SENSOR FOR DETECTING HEIGHT FROM GROUND SURFACE

  • J. K. Ha;Lee, J. Y.;Park, Y. M.;Kim, T. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.178-187
    • /
    • 2000
  • The tillage operation by rotary implements is widely done in Korea. In the case of rotary implements, the tillage depth control system is one of important implement control systems. A contact type-sensor for measurement of the ground height was designed and fabricated to evaluate the possibility of application of the sensor on the tillage depth control system. Indoor experiments were conducted to obtain static and dynamic detection characteristics of the sensor under various conditions; 1) several moisture contents for four soil samples, 2) two soil surfaces with a designed configuration, 3) four heights of the sensor from the soil surface, 4) five traveling speeds of the carrier on which the sensor was attached, and so on. The experimental results showed the detection characteristics of the sensor sufficient as the ground height sensor of the tillage depth control system.

  • PDF

Development of an accelerated life test procedure considering the integrated equivalent load of an implement working pump for an agricultural tractor

  • Moon, Seok-Pyo;Baek, Seung-Min;Chung, Sun-Ok;Park, Young-Jun;Han, Tae-Ho;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1123-1134
    • /
    • 2020
  • The goal of this study was to develop an accelerated life test for an implement working pump for an agricultural tractor. The field experiments were conducted to measure the load of an implement working pump during major agricultural operations such as plow tillage, rotary tillage, baler operations, and wrapping operations. The measurement system for an implement working pump load was constructed using a pressure sensor, the engine rotational speed, and the hitch pump displacement. The measured implement working pump load was calculated as an equivalent load for each agricultural operation using the Palmgren-Miner rule, which is a cumulative damage method. The equivalent load was calculated using the total load data and peak load data when the total data included the operation of an implement working. The annual usage time of the agricultural tractor was applied to develop two integrated equivalent loads. The acceleration factor was calculated to develop an accelerated life test and was calculated from the two integrated equivalent loads, the maximum pressure, and the flow rate conditions of the hitch pump. In Korea, the warranty life of a tractor is 2,736 hours, and the time required for the test to guarantee the operational life of tractors was calculated as 7,561 hours. The acceleration factors were calculated as 453.6 and 38.3, respectively, from the total load data and peak load data. The fatigue test time can be shortened by 16.7 and 197.4 hours according to the result of the acceleration factors.

Development of an Inchworm type Actuator for an Ultra Precise Linear Stage (초정밀 리니어 스테이지용 인치웜 타입 구동장치 개발)

  • Moon, Chan-Woo;Lee, Sung-Ho;Chung, Jung-Kee;Lee, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.309-312
    • /
    • 2002
  • Precision stage is essential device for semiconductor equipments, fiber optic assembly systems and micro machines. In this paper, we develop a piezo-electric inchworm type actuator for long stroke ultra precision linear stages, and implement a controller to interface with commercial motion controllers. It provides fast implementation of precise position control system substituting for rotary motor. In the future, using a laser interferometer as a position sensor, we plan to implement a nano meter precision stage.

  • PDF

Performance Analysis of Electronic Control System for Weeding Implement such as Slope Land (경사지 제초 작업기의 전자제어시스템 성능분석)

  • Park, Won-Yeop;Hong, Sung-Ha;Lee, Jae Min;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.3
    • /
    • pp.229-238
    • /
    • 2015
  • This study was conducted to develop electronic control system of weeding implement that can operated at various areas such as slope land and inclined road side. The weeding implement consists of five main parts; the electronic control system, the hydraulic system, the main frame, the boom and arm mechanism, and the rotary type weeder. And the weeding implement was developed to be attached by three-point hitch of tractor considering the use of electronic control system. As a result, the electronic control test was conducted with the weeding implement attached to tractor in slope land. The results of the electronic control system test showed satisfactory weeding performance.

Motion and Image Matching Algorithms and Implementation for Motion Synchronization in a Vehicle Driving Simulator (차량 운전 시뮬레이터에서 모션과 영상의 동기화를 위한 알고리즘 및 구현 방안)

  • Kim, Hun-Se;Kim, Dae-Seop;Kim, Dong Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.184-193
    • /
    • 2017
  • This work shows how to create an algorithm and implementation for motion and image matching between a vehicle simulator and Unity 3D based virtual object. The motion information of the virtual vehicle is transmitted to the real simulator via a RS232 communication protocol, and the motion is controlled based on the inverse kinematics solution of the platform adopting rotary-type six actuators driving system. Wash-out filters to implement the effective motion of the motion platform are adopted, and thereby reduce the dizziness and increase the realistic sense of motion. Furthermore, the simulator system is successfully designed aiming to reducing size and cost with adaptation of rotary-type six actuators, real driving environment via VR (Virtual Reality), and control schemes which employ a synchronization between 6 motors and 3rd order motion profiles. By providing relatively big sense of motion particularly in impact and straight motions mainly causing simulator sickness, dizziness is remarkably reduced, thereby enhancing the sense of realistic motion.

Development of Fertilizer-Soil Incorporation Band Tiller for Walking Cultivator (보행관리기 부착형 부분경운-시비 작업기 개발)

  • Kim C. S.;Kwon B. C
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.487-494
    • /
    • 2004
  • This study was conducted to develope a fertilizer-soil incorporation band tiller for the walking cultivator. Because the mixing of soil and fertilizer in the furrow of dry-field has been done manually, several time, heavy labor and much man power were required for the job. This rotary type implement is developed to substitute this manual operation for soil-fertilizer incorporation. The results of this study are summarized as follows : 1) This implement was composed of tilling device, fertilizer application device, frame and tail wheel device. 2) The revolution of driving wheel was $11\~28\;rpm$, that of application roller was $13\~14\;rpm$ the application rate range per revolution of driving wheel was $4.43\~11.80\;g$g and the application rate range by the working speed and the opening quantity was $84.12\~557.20\;g/min$. 3) The adequate working speed was $0.20\~0.40\;m/s$ and the required minimum width of open furrow was 250 mm.

Development of a High-Resolution Encoder System Using Dual Optical Encoders (이중 광학식 회전 엔코더 구조를 이용한 고정밀도 엔코더 시스템 개발)

  • Lee, Se-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.76-85
    • /
    • 2007
  • An optical rotary encoder is easy to implement for automatic control applications. In particular, the output of the encoder has a digital form pulse, which is also easy to be connected to a popular digital controller. By using the encoder, there are various angular velocity detecting methods, M-, T-, and M/T-method. Each of them has a property of its own. They have common limitation that the angular velocity detection period is strongly subject to the destination velocity magnitude in case of ultimate low range. They have ultimate long detection period or cannot even detect angular velocity at near zero velocity. This paper proposes a dual encoder system with two encoders of normal resolution. The dual encoder system is able to keep detection period moderately at near zero velocity and even detects zero velocity within nominal period. It is useful for detecting velocity in case of changing rotational direction at which there occurs zero velocity. In this paper, various experimental results are shown for the dual encoder system validity.

Sliding Mode Control of Electric Booster System (전동 부스터의 슬라이딩 모드 제어)

  • Yang, I-Jin;Choi, Kyu-Woong;Huh, Kun-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.519-525
    • /
    • 2012
  • Electric brake booster systems replace conventional pneumatic brake boosters with electric motors and rotary-todisplacement mechanisms including ECU (Electronic Control Unit). Electric booster brake systems require precise target pressure tracking and control robustness because vehicle brake systems operate properly given the large range of loading and temperature, actuator saturation, load-dependent friction. Also for the implement of imbedded control system, the controller should be selected considering the limited memory size and the cycle time problem of real brake ECU. In this study, based on these requirements, a sliding mode controller has been chosen and applied considering both model uncertainty and external disturbance. A mathematical model for the electric booster is derived and simulated. The developed sliding mode controller considering chattering problem has been compared with a conventional cascade PID controller. The effectiveness of the controller is demonstrated in some braking cases.

Development of an Algorithm for Detecting Angular Bisplacement with High Accuracy Based on the Dual-Encoder (이중 증분 엔코더에 기초한 초정밀 회전각도 변위 검출 알고리즘 개발)

  • Lee, Se-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.29-36
    • /
    • 2008
  • An optical rotary encoder is easy to implement for automation system applications. In particular, the output of the encoder has a digital form pulse, which is also easy to be connected to a popular digital controller. By using an incremental encoder and a counting device, it is easy to measure angular displacement, as the number of the output pulses is proportional to the rotational displacement. This method can only detect the angular placement once a pulse signal comes out of the encoder. The angular displacement detection period is strongly subject to the change of the angular displacement in case of ultimate low velocity range. They have ultimate long detection period or cannot even detect angular displacement at near zero velocity. This paper proposes an algorithm for detecting angular displacement by using a dual encoder system with two encoders of normal resolution. The angular displacement detecting algorithm is able to keep detection period moderately at near zero velocity and even detect constant angular displacement within nominal period. It is useful for motion control applications in case of changing rotational direction at which there occurs zero velocity. In this paper, various experimental results are shown for the angular displacement detection algorithm.