• Title/Summary/Keyword: Rot

Search Result 1,772, Processing Time 0.022 seconds

Cylindrocarpon destructans/Ilyonectria radicicola-species complex: Causative agent of ginseng root-rot disease and rusty symptoms

  • Farh, Mohamed El-Agamy;Kim, Yeon-Ju;Kim, Yu-Jin;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Cylindrocarpon destructans/Ilyonectria radicicola is thought to cause both rusty symptom and root-rot disease of American and Korean ginseng. Root-rot disease poses a more serious threat to ginseng roots than rusty symptoms, which we argue result from the plant defense response to pathogen attack. Therefore, strains causing rotten root are characterized as more aggressive than strains causing rusty symptoms. In this review, we state 1- the molecular evidence indicating that the root-rot causing strains are genetically distinct considering them as a separate species of Ilyonectria, namely I. mors-panacis and 2- the physiological and biochemical differences between the weakly and highly aggressive species as well as those between rusty and rotten ginseng plants. Eventually, we postulated that rusty symptom occurs on ginseng roots due to incompatible interactions with the weakly aggressive species of Ilyonectria, by the established iron-phenolic compound complexes while root-rot is developed by I. morspanacis infection due to the production of high quantities of hydrolytic and oxidative fungal enzymes which destroy the plant defensive barriers, in parallel with the pathogen growth stimulation by utilizing the available iron. Furthermore, we highlight future areas for study that will help elucidate the complete mechanism of root-rot disease development.

High-Gain Fabry-Pérot Cavity Antenna with Planar Metamaterial Superstrate for Wibro Base Station Antennas (평판형 메타 물질로 구성된 상부 덮개를 갖는 와이브로 기지국용 고 이득 Fabry-Pérot 공진기 안테나)

  • Kim, Dong-Ho;Choi, Jae-Ick
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1367-1374
    • /
    • 2008
  • A new high-gain Fabry-$P{\acute{e}}rot$ cavity antenna for wireless broadband internet(Wibro) base station antennas, which is covered with metamaterial superstrate presenting simultaneous negative values of permittivity and permeability, is proposed. To facilitate the fabrication process using the printed circuit board(PCB) technology of today, a new planar-type metamaterial superstrate is designed, which shows negative and low positive values of a refractive index near the Wibro service frequency band. And the principle of antenna gain enhancement is analyzed from the two different view points of effectively low refractive index and of the Fabry-$P{\acute{e}}rot$ resonance condition. Single square patch antenna is used as a feeder. The separation distance is determined by considering the reflection phases of the metamaterial superstrate and the substrate satisfying Fabry-$P{\acute{e}}rot$ resonance condition, respectively. Comparison between the prediction and the measurement shows good agreement, which verifies the validity of our design approach.

Biotransformation of trans,trans-farnesol by Wood Rot Fungi (목재부후균에 의한 trans,trans-farnesol의 생물변환)

  • Kim, Young-Hun;Lee, Su-Yeon;Park, Mi-Jin;Choi, In-Gyu;Lee, Jae-Won
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.37-41
    • /
    • 2012
  • In this study, we screened and evaluated possibility of wood rot fungi as biocatalyst for biotransformation of sesquiterpenes. Screening were performed to select the most promising microorganisms with ability to biotransformation the substrate trans,trans-fanesol. Trans,trans-farnesol which is synthesized precursor of sesquiterpenes was used for resistance test on 19 of wood rot fungi. From the 19 tested wood rot fungi, 5 were selected by resistance test on different concentration of trans,trans-fanesol. Biotransformation was performed with selected wood rot fungi on liquid culture. The metabolites detected by GC-MS analysis were nerolidol for Laetiporus sulphureus var. miniatus (jungh) Imaz and eicosane for Coriolus versicolor (L.Fr) Prlar and isoborneol for Fomitopsis pinicola and isocyclocitral for Lampteromyces japonicas. As the results, wood rot fungi could be potential biocatalyst for biotransformation of sesquiterpenes.

Study on Mensurability of Internal Defect Prediction and of Classification of Log by NDE(Non-Destructive Evaluation) (I) - Focused on Cross Direction of Log - (비파괴 시험방법을 이용한 원목 내부결함 예측 및 분류의 계량화(計量化)에 관한 연구 (I) - 원목의 횡단방향을 중심으로 -)

  • Park, Heon;Gang, Eun-Chang;Chun, Sung-Jin;Yoon, Kyung-Seob
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.47-54
    • /
    • 1995
  • This study was to measure the properties of logs and classify them by non-destructive methods. The purpose of this experiment was focused at mensurability of logs by non-destructive methods. The non-destructive instrument, Stress-Wave Timer 239A which was made by Metriguard in U.S.A., was used. The stress wave velocities of log's cross direction were measured and compared with three different methods; 1. with hammer, 2. with hammer and D.B.H. meter, 3. with manufactured instrument. Number of used logs were seven logs, which were classified by naked eye into six groups; very severe rot, severe rot, mild rot & knot, mild rot & check, mild rot, sound log, and in diameter were into three groups; large(57.4cm), medium(36~41.2cm), small(28.9cm) log. The results, which were classified by mensurability with non-destructive methods, were followed; 1. The stress wave velocities were very different between rot and sound log. So it meant the possibility of mensurability of logs by non-destructive method even if high standard error. 2. The stress wave velocities decreased with checks more than with rots, which meant the checks affected speeds more. 3. The stress wave velocities increased with knot. 4. The velocities with manufactured instrument showed lower standard error, so more accurate results than other methods. Especially the required labour decreased from 3~4 to 2 persons. 5. Finally, the mensurability showed more accurate results and made the classification of logs scientific.

  • PDF

Soil Chemical Properties, Microbial Community and Ginseng Root Rot in Suppressive and Conducive Soil Related Injury to Continuously Cropped Ginseng (인삼 연작장해 유발토양과 억제토양의 화학성, 미생물상 및 뿌리썩음병 발생 특성)

  • Lee, Sung Woo;Lee, Seung Ho;Seo, Mun Won;Jang, In Bok;Kwon, Ra Yeong;Heo, Hye Ji
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.142-151
    • /
    • 2020
  • Background: Suppressive soil inhibits soil-borne diseases if pathogens are present, and ginseng does not show injury even if replanted in the same field. Methods and Results: Soil chemical properties and microbial community of soil were investigated in soil suppressive and conducive to ginseng root rot. Root rot disease in 2-year-old ginseng was tested by mixing conducive soil, with suppressive or sterilized suppressive soil. The root rot ratio in suppressive soil was 43.3% compared to 96.7% in conducive soil. Biological factors acted to inhibit the root rot because disease ratio was increased in the sterilized suppressive soil compared to that in non-suppressive soil. The suppressive soil had lower pH, nitrate nitrogen and sodium than the conducive soil. Dominat bacteria and fungi (more than 1.0%) were 3 and 17 species in conducive soil and 7 and 23 species in suppressive soil, respectively. The most predominant fungi were Pseudaleuria sp. HG936843 (28.70%) in conducive soil and Pseudogymnoascus roseus (7.52%) in suppressive soil. Conclusion: Microbial diversity was more abundant in the suppressive soil than in the conducive soil, and the proportion of pathogens (Nectriaceae sp.) causing root rot was significantly lower in the suppressive soil than in the conducive soil.

Assessment of Sustainable Production on Paddy Field Treated with Green Manure Crops Using Sustainability Index

  • Kim, Kwang Seop;Kim, Sook-Jin;Park, Ki Do;Lee, Choon-Woo;Ryu, Jin-Hee;Choi, Jong-Seo;Jeon, Weon-Tai;Kang, Hang-Won;Kim, Min-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.165-171
    • /
    • 2014
  • Assessment of sustainable production on a cropland can help to determine the most proper management practices. In this study, we evaluated the sustainable production on paddy field treated with green manure crops using sustainability index which based on nutrient index, microbiological index, and crop index related to nutrient-supplying capacity. Especially choosing appropriate indicators from a minimum data set (MDS) were used the principal components analysis (SI-2) as well as expert opinion (SI-1) usually used in sustainability index. Six treatments including the two tillage treatments and two green manure crops were investigated as follows; (i) moldrotary + rotary tillage without green manure crop (Con), with (ii) hairy vetch (Con-HV), and (iii) hairy vetch + green barely (Con-HV+GB), (iv) rotary tillage without green manure crop (Rot), with (ii) hairy vetch (Rot-HV), and (iii) hairy vetch + green barly (Rot-HV+GB). Con-HV and Rot-HV in SI-1 were maintained sustainability while Rot-HV and Rot-HV+GB in SI-2. Especially, treatments (Con and Rot) without green manure crops were more unsustainable than with green manure crops because of the low value of microbiological and crop index than with green manure crops. Meanwhile, sustainability indices and grain yield had the high correlation values ($R^2=0.756$ and 0.928 in SI-1 and SI-2, respectively). These results meant that application of green manure crops such as hairy vetch could improve both yield and soil quality in paddy.

Influence of Peanut Cultivars and Environmental Conditions on the Diversity and Community Composition of Pod Rot Soil Fungi in China

  • Wang, Mian;Chen, Mingna;Yang, Zhen;Chen, Na;Chi, Xiaoyuan;Pan, Lijuan;Wang, Tong;Yu, Shanlin;Guo, Xingqi
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.392-400
    • /
    • 2017
  • Peanut yield and quality are seriously affected by pod rot pathogens worldwide, especially in China in recent years. The goals of this study are to analyze the structure of fungal communities of peanut pod rot in soil in three peanut cultivars and the correlation of pod rot with environmental variables using 454 pyrosequencing. A total of 46,723 internal transcribed spacer high-quality sequences were obtained and grouped into 1,706 operational taxonomic units at the 97% similarity cut-off level. The coverage, rank abundance, and the Chao 1 and Shannon diversity indices of the operational taxonomic units were analyzed. Members of the phylum Ascomycota were dominant, such as Fusarium, Chaetomium, Alternaria, and Sordariomycetes, followed by Basidiomycota. The results of the heatmap and redundancy analysis revealed significant variation in the composition of the fungal community among the three cultivar samples. The environmental conditions in different peanut cultivars may also influence on the structure of the fungal community. The results of this study suggest that the causal agent of peanut pod rot may be more complex, and cultivars and environmental conditions are both important contributors to the community structure of peanut pod rot fungi.

Effect of Crop Rotation System on Soil Chemical Properties and Ginseng Root Rot after Harvesting Ginseng (인삼 연작지에서 윤작물 작부체계가 토양화학성 및 인삼뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Park, Kyung Hoon;Jang, In Bok;Jin, Mei Lan;Seo, Moon Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.244-251
    • /
    • 2017
  • Background: The application of crop rotation systems may reduce the occurrence of soil-borne diseases by releasing allelochemicals and by subsequent microbial decomposition. Methods and Results: For reduction of ginseng root rot by the crop rotation system, after harvesting 6-year-old ginseng, fresh ginseng was grown along with continuous cultivation of sweet potato, peanut, and bellflower. Growth of 2-year-old ginseng was significantly inhibited in the continuous cultivation than in the first cultivation. Sweet potato, peanut and bellflower cultivations assisted in obtaining normal yields of ginseng in the first year after the harvest of 6-year-old ginseng. Salt concentration, potassium and sodium contents were gradually decreased, and, organic matter was gradually increased through cirp rotation. Phosphate, calcium and magnesium contents were not altered. The density of the root rot fungus was gradually decreased by the increase in crop rotation; however it was decreased distinctly in the first year compared to the second and third year. The severity of root rot disease tended to decrease gradually by the increase of crop rotation. Conclusions: Short-term crop rotation for three years promoted the growth of ginseng, however root rot infection was not inhibited significantly, although it was somewhat effective in lowering the density of the root rot pathogen.

First Report of Black Rot Caused by Diplodia seriata on Apple (Diplodia seriata에 의한 사과 검은썩음병 발생보고)

  • Kim, Young Soo;Yun, Yun Joo;Jeon, Yongho
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.321-327
    • /
    • 2018
  • In 2018, symptoms of black rot on apple (Malus pumila var. dulcissima KOIDZ) cv. Fuji were observed in Yeongcheon-si, Korea. The fruit decay symptoms consisted of purple pimples spots, black rot around the seed cavity (calyx end), mummified fruit. To isolate the causal agent, small fragment (2 to 3 mm) of decayed tissue from the lesion margin were placed on WA or PDA. Fungal colonies on PDA produced dense white aerial mycelium, becoming dark gray with age. Pycnidia and conidia were observed under a light microscopy. The shapes of conidia were aseptate, ovoid, rounded at both ends, and $21.7-28.3{\times}9.9-15.3{\mu}m$. Based on morphological and cultural characteristics, this fungus was identified as Diplodia seriata. To confirm its identity, two loci (ITS and ${\beta}$-tubulin) were sequenced for molecular identification. BLAST searches indicated 100% identity with D. seriata. A pathogenicity test was conducted with isolates on Fuji apples. The apples were inoculated with mycelial plugs (5 mm) from 7-day-old cultures of the putative pathogens. All inoculated apples developed rot symptoms identical to the original symptoms, from which D. seriata were reisolated, fulfilling Koch's postulates. This study is the first report of black rot caused Diplodia seriata on apple.

Biological Control of Fusarium oxysporum, the Causal Agent of Fusarium Basal Rot in Onion by Bacillus spp.

  • Jong-Hwan Shin;Ha-Kyoung Lee;Seong-Chan Lee;You-Kyoung Han
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.600-613
    • /
    • 2023
  • Fusarium oxysporum is the main pathogen causing Fusarium basal rot in onion (Allium cepa L.), which incurs significant yield losses before and after harvest. Among management strategies, biological control is an environmentally safe and sustainable alternative to chemical control. In this study, we isolated and screened bacteria for antifungal activity against the basal rot pathogen F. oxysporum. Isolates 23-045, 23-046, 23-052, 23-055, and 23-056 significantly inhibited F. oxysporum mycelial growth and conidial germination. Isolates 23-045, 23-046, 23-052, and 23-056 suppressed the development of Fusarium basal rot in both onion seedlings and bulbs in pot and spray inoculation assays. Isolate 23-055 was effective in onion seedlings but exhibited weak inhibitory effect on onion bulbs. Based on analyses of the 16S rRNA and rpoB gene sequences together with morphological analysis, isolates 23-045, 23-046, 23-052, and 23-055 were identified as Bacillus thuringiensis, and isolate 23-056 as Bacillus toyonensis. All five bacterial isolates exhibited cellulolytic, proteolytic, and phosphate-solubilizing activity, which may contribute to their antagonistic activity against onion basal rot disease. Taken together B. thuringiensis 23-045, 23-046, 23-052, and 23-055 and B. toyonensis 23-056 have potential for the biological control of Fusarium basal rot in onion.