• Title/Summary/Keyword: Root shape

Search Result 469, Processing Time 0.034 seconds

Accessory auricle: Classification according to location, protrusion pattern and body shape

  • Hwang, Jungil;Cho, Jaeyoung;Burm, Jin Sik
    • Archives of Plastic Surgery
    • /
    • v.45 no.5
    • /
    • pp.411-417
    • /
    • 2018
  • Background Accessory auricles (AAs) are common congenital anomalies. We present a new classification according to location and shape, and propose a system for coding the classifications. Methods This study was conducted by reviewing the records of 502 patients who underwent surgery for AA. AAs were classified into three anatomical types: intraauricular, preauricular, and buccal. Intraauricular AAs were divided into three subtypes: intracrural, intratragal, and intralobal. Preauricular AAs were divided into five subtypes: precrural, superior pretragal, middle pretragal, inferior pretragal, and prelobal. Buccal AAs were divided into two subtypes: anterior buccal and posterior buccal. AAs were also classified according to their protrusion pattern above the surrounding surface: pedunculated, sessile, areolar, remnant, and depressed. Pedunculated and sessile AAs were subclassified as spherical, ovoid, lobed, and nodular, according to their body shape. Cartilage root presence and family history of AA were reviewed. A coding system for these classifications was also proposed. Results The total number of AAs in the 502 patients was 1,003. Among the locations, the superior pretragal subtype (27.6%) was the most common. Among the protrusion patterns and shapes, pedunculated ovoid AAs were the most common in the preauricular (27.8%) and buccal areas (28.0%), and sessile lobed AAs were the most common in the intraauricular area (48.7%). The proportion of AAs with a cartilage root was 78.4%, and 11% of patients had a family history. The most common type of preauricular AA was the superior pretragal pedunculated ovoid AA (13.2%) with a cartilage root. Conclusions This new system will serve as a guideline for classifying and coding AAs.

Unbalanced ANOVA for Testing Shape Variability in Statistical Shape Analysis

  • Kim, Jong-Geon;Choi, Yong-Seok;Lee, Nae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.317-323
    • /
    • 2010
  • Measures are very useful tools for comparing the shape variability in statistical shape analysis. For examples, the Procrustes statistic(PS) is isolated measure, and the mean Procrustes statistic(MPS) and the root mean square measure(RMS) are overall measures. But these measures are very subjective, complicated and moreover these measures are not statistical for comparing the shape variability. Therefore we need to study some tests. It is well known that the Hotelling's $T^2$ test is used for testing shape variability of two independent samples. And for testing shape variabilities of several independent samples, instead of the Hotelling's $T^2$ test, one way analysis of variance(ANOVA) can be applied. In fact, this one way ANOVA is based on the balanced samples of equal size which is called as BANOVA. However, If we have unbalanced samples with unequal size, we can not use BANOVA. Therefore we propose the unbalanced analysis of variance(UNBANOVA) for testing shape variabilities of several independent samples of unequal size.

Shape From Focus Algorithm with Optimization of Focus Measure for Cell Image (초점 연산자의 최적화를 통한 세포영상의 삼차원 형상 복원 알고리즘)

  • Lee, Ik-Hyun;Choi, Tae-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.3
    • /
    • pp.8-13
    • /
    • 2010
  • Shape form focus (SFF) is a technique that reconstructs 3D shape of an object using image focus. Although many SFF methods have been proposed, there are still notable inaccuracy effects due to noise and non-optimization of image characteristics. In this paper, we propose a noise filter technique for noise reduction and genetic algorithm (GA) for focus measure optimization. The proposed method is analyzed with a statistical criteria such as Root Mean Square Error (RMSE) and correlation.

  • PDF

Shape and anatomical relationship of the mental foramen to the mandibular premolars in an Indian sub-population: a retrospective CBCT analysis

  • Komal Sheth;Kulvinder Singh Banga;Ajinkya M. Pawar;James L. Gutmann;Hyeon-Cheol Kim
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.1.1-1.13
    • /
    • 2022
  • Objectives: This study assessed the shape and anatomical relationship of the mental foramen (MF) to mandibular posterior teeth in an Indian sub-population. Materials and Methods: In total, 475 existing cone-beam computed tomography records exhibiting 950 MFs and including the bilateral presence of mandibular premolars and first molars were assessed. Images were evaluated 3-dimensionally to ascertain the position, shape, and anatomical proximity of MFs to mandibular teeth. The position and shape of MFs were measured and calculated. The Pythagorean theorem was used to calculate the distance between the root apex of the mandibular teeth and the MF. Results: MFs exhibited a predominantly round shape (left: 67% and right: 65%) followed by oval (left: 30% and right: 31%) in both males and females and in different age groups. The root apices of mandibular second premolars (left: 71% and right: 62%) were closest to the MF, followed by distal to the first premolars and mesial to the second premolars. The mean vertical distance between the MF and the nearest tooth apex calculated on sagittal sections was 2.20 mm on the right side and 2.32 mm on the left side; no significant difference was found according to sex or age. The distance between the apices of the teeth and the MF was ≥ 4 mm (left; 4.09 ± 1.27 mm and right; 4.01 ± 1.15 mm). Conclusions: These findings highlight the need for clinicians to be aware of the location of the MF in treatment planning and while performing non-surgical and surgical endodontic procedures.

Fused roots of maxillary molars: characterization and prevalence in a Latin American sub-population: a cone beam computed tomography study

  • Marcano-Caldera, Maytte;Mejia-Cardona, Jose Luis;Blanco-Uribe, Maria del Pilar;Chaverra-Mesa, Elena Carolina;Rodriguez-Lezama, Didier;Parra-Sanchez, Jose Hernan
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.2
    • /
    • pp.16.1-16.12
    • /
    • 2019
  • Objectives: The upper molars generally have three roots; therefore, different combinations of fusion can occur, increasing the possibility of finding more complex root canal systems. The purpose of this study was to evaluate the prevalence and characterization of fused roots in first and second maxillary molars using cone-beam computed tomography (CBCT) in a Colombian population. Materials and Methods: A total of 1274 teeth were evaluated, of which 534 were maxillary first molars and 740 were maxillary second molars. Axial sections were made at the cervical, middle, and apical levels to determine the prevalence of root fusion and the types of fusion. Results: Overall, 43% of the molars (n = 551) presented some type of fused root. Root fusion was present in 23.4% of the maxillary first molars. The most frequent type of fused root was type 3 (distobuccal-palatal; DB-P) (58.9%). Root fusion was observed in 57.6% of the maxillary second molars, and the most prevalent type of fused root was type 6 (cone-shaped) (45.2%). Of the maxillary molars, 12.5% were classified as C-shaped. Conclusion: Within the limitations of this study, there was a high prevalence of fused roots in maxillary molars in the Colombian population, mainly in the maxillary second molars. In first molars, the most common type of fused root was type 3 (DB-P) and in second molars, the most common type was type 6 (cone-shaped). Additionally, molars with root fusion presented variation at different levels of the radicular portion, with implications for treatment quality.

Influence of the anterior arch shape and root position on root angulation in the maxillary esthetic area

  • Petaibunlue, Suweera;Serichetaphongse, Pravej;Pimkhaokham, Atiphan
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Purpose: This study was conducted to characterize the relationship of the angulation between the tooth root axis and alveolar bone axis with anterior alveolar(AA) arch forms and sagittal root position (SRP) in the anterior esthetic region using cone-beam computed tomography (CBCT) images. Materials and Methods: CBCT images that met the inclusion and exclusion criteria were categorized using a recent classification of AA arch forms and a SRP classification. Then, the angulation of the root axis and the alveolar bone axis was measured using mid-sagittal CBCT images of each tooth. The relationships of the angulation with each AA arch form and SRP classification were evaluated using 1-way analysis of variance and a linear regression model. Results: Ninety-eight CBCT images were included in this study. SRP had a greater influence than the AA arch form on the angulation of the root axis and the alveolar bone axis(P<0.05). However, the combination of AA arch form and SRP was more predictive of the angulation of the root axis and the alveolar bone axis than either parameter individually. Conclusion: The angulation of the root axis and alveolar bone axis demonstrated a relationship with the AA arch form and SRP in teeth in the anterior esthetic region. The influence of SRP was greater, but the combination of both parameters was more predictive of root-to-bone angulation than either parameter individually, implying that clinicians should account for both the AA arch form and SRP when planning implant placement procedures in this region.

ORIGINAL ARTICLE - The incidence and types of C-shaped canal of permanent mandibular second molar in Korean sub-population: Cone-Beam CT data analysis (한국인의 영구 하악 제2대구치의 C형 근관 빈도와 형태 : Cone-Beam CT 자료 분석)

  • Moon, Jung-Bon;Jang, Ju-Kyong;Son, Sung-Ae;Park, Bong-Soo;Lee, Hyo-Jin;Kim, Hyeon-Cheol
    • The Journal of the Korean dental association
    • /
    • v.50 no.4
    • /
    • pp.203-210
    • /
    • 2012
  • Objective: The aim of this study was to investigate the incidence of the C-shaped canal of permanent mandibular second molar (PMSM) in Korean sub-population using Cone-Beam CT (CBCT) data and analyze the types of C-shaped canal. Materials & Methods: The protocol for this study was approved by the Institutional Review Board at the Pusan National University Hospital (E-2011039). Among the CBCT images taken of patients who visited the St. Bennedict Dental Hospital (Busan, Korea) from May 2008 to April 2011 for implant surgery and surgical removal of impacted teeth, high-quality CBCTs from 705 patients (361 male and 342 female) were screened and 607 PMSMs of 383 patients were evaluated retrospectively. All PMSMs were anatomically analyzed in detail by using image viewer software (EasyDent; Vatech). PMSMs were evaluated in the axial plane to investigate the shape of root and canals. The C-shaped canals were classified into five types. The total incidence, gender ratio, bilateral and unilateral appearance. and the correlation between right-side and left-side occurrences of C-shaped PMSMs were computed and compared statistically using the chi-square test. Results: Among the 607 PMSMs of 383 CBCTs of 187 females and 196 males, 198 PMSMs(32.6%) had C-shaped root and 158 PMSMs(26.0%) had C-shaped canals. The shape of C-shaped root canals at the furcalion level did not have significant change at the level of mid root (P<0.0001). Female had more prevalence of C-shaped root canals than male (P<0.0001). The prevalence of bilateral occurrence of C-shaped root canals was higher than unilateral occurrence. Conclusions: The occurrence of C-shaped PMSMs among a Korean population was 32.6% and was higher than other countries and ethnicities. Understanding the prevalence of PMSMs with a C-shaped root and/or canal in a Korean population may be useful for successful endodontic treatments.

A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems (파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF

Dynamic Characteristic Study of Hingeless Blade Stiffness Reinforcement for Bearingless Rotor Whirl Tower Test (무베어링 로터 훨타워 시험을 위한 무힌지 블레이드 강성보강에 따른 동특성 연구)

  • Kim, Taejoo;Yun, Chulyong;Kee, Youngjoong;Kim, Seung-Ho;Jung, Sungnam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.105-111
    • /
    • 2013
  • Whirl tower test is conducted basically during helicopter rotor system development process. And for whirl tower test of rotor hub system, new design blade or existing blade which is remodeled for new rotor hub system is used. Because of simple shape and efficient aerodynamic characteristic, BO-105 helicopter blade is used for helicopter rotor hub development project widely. Originally BO-105 blade is used for hingeless hub system and blade root is used to flexure. So flap stiffness and lag stiffness at blade root area is relatively low compare with airfoil area. So, in order to apply the BO-105 blade to bearingless hub, blade root area have to be reinforced. And in this process, blade root area's section property is changed. In this paper, we suggest reinforcement method of BO-105 blade root area and study dynamic characteristic of bearingless rotor system with reinforcement BO-105 blade.

Root Cause Analysis on the Steam Turbine Blade Damage of the Combined Cycle Power Plant (복합화력발전소 증기터빈 동익 손상 원인분석)

  • Kang, M.S.;Kim, K.Y.;Yun, W.N.;Lee, W.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • The last stage blade of the low pressure steam turbine remarkably affects turbine plant performance and availability Turbine manufacturers are continuously developing the low pressure last stage blades using the latest technology in order to achieve higher reliability and improved efficiency. They tend to lengthen the last stage blade and apply shrouds at the blades to enhance turbine efficiency. The long blades increase the blade tip circumferential speed and water droplet erosion at shroud is anticipated. Parts of integral shrouds of the last stage 40 inch blades were cracked and liberated recently in a combined cycle power plant. In order to analyze the root cause of the last stage blades shroud cracks, we investigated operational history, heat balance diagram, damaged blades shape, fractured surface of damaged blades, microstructure examination and design data, etc. Root causes were analyzed as the improper material and design of the blade. Notches induced by erosion and blade shroud were failed eventually by high cycle fatigue. This paper describes the root cause analysis and countermeasures for the steam turbine last stage blade shroud cracks of the combined cycle power plant.

  • PDF