• Title/Summary/Keyword: Root growth zone

Search Result 205, Processing Time 0.036 seconds

Effects of Water Stress on Leaf Water Potential, Photosynthesis and Root Development in Tobacco Plant (수분 스트레스가 담배의 잎 수분 포텐셜, 광합성 및 뿌리발달에 미치는 영향)

  • 이상각;서용원;존슨 제리;강병화
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.2
    • /
    • pp.146-152
    • /
    • 1997
  • Development of shoot and root, leaf water potential and photosynthetic rate affected by water stress in early growing stage of tobacco were surveyed to interpret stress response in terms of plant physiological and agricultural aspects. The growth of shoot and root was highly suppressed by water stress and the difference in dry weight by rewatering was smaller in root than in shoot. The total root length was highly decreased by water stress and the lengths of root for water stress and non-stress were 74m and 84m, respectively, after rewatering. The root growth treated by water stress was increased between 2nd and 3rd day after treatment indicating that temporary water stress at early growing stage might have increased of root zone activity for early growth stage. The leaf water potentials were decreased to -7.63MPa, -9.47MPa, -11.89MPa, -13MPa at the 2nd, 3rd, 4th and 5th day by water stress. The relative water contents were 75%, 62% and 57% at the 3rd, 4th and 5th day after treatment. Photosynthesis was reduced largely by water stress. The photosynthetic rate after treatment at 2nd day and 3rd day was dropped to 18.15$\mu$mol. $CO_2$/$m^2$ㆍsec$^{-1}$ and 9.35$\mu$mol. $CO_2$/$m^2$ㆍsec$^{-1}$. It was never recovered to the normal, even after rewatering. Stomatal conductance had been reduced since 2nd day after treatment and increased after rewatering.

  • PDF

Cross-sectional Cell Anatomy and Physiological Growth Responses of Cells in Root Growth Zones of Two Tall Fescue Genotypes at Two Nitrogen Levels (톨페스큐 뿌리생장부위의 횡적 해부구조 및 세포생장의 생리적 반응에 대한 질소효과)

  • Beom Heon, Song;Curtis J, Nelson
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.3
    • /
    • pp.297-307
    • /
    • 1995
  • Anatomical and physiological studies of sink tissues are required for better understanding the biological plant growth system and energy metabolism Anatomy of root growth zones of two genotypes of tall fescue (Festuca arundinacea Schreb.) receiving 50 or 200 ppm N were determined, Cross-sectional anatomy and cells responses of root growth zones were observed and examined. Rapid radial root expansion occurred within the first 1.0 mm from root apex, and then increased gradually for both genotypes and N levels. Another increase in diameter occurred at high N after cell elongation slowed near 3.0 mm. Area of the central cylinder cell increased rapidly near the root apex. However, it then decreased again about 1.0 to 1.5 mm from the apex, perhaps because of pressure from the rapid increase of root diameter due largely to an increasing proportion of cortex and epidermis or hypodermis in the distal portion of the root growth zone. Root area from the apical initial to 6.0 mm distal consisted of 10 to 18% epidermis or exodermis, 67 to 79% cortex, and 10 to 22% vascular cylinder cells containing cambium cells (6 to 20%) and xylem cells (0.8 to 2.5%). These data indicate that N application affects root growth radially by increasing mainly cortex cell area, with less effect on epidermis and central cylinder cells.

  • PDF

Growth and Berry Quality of 'Kyoho' Grapes in Double Cropping System as Affected by Root Zone Heating and CO2 Enrichment in Plastic Greenhouse ('거봉' 포도 2기작 재배 시 근권 가온 및 CO2 시용이 생장 및 과실 품질에 미치는 영향)

  • Oh, Sung Do;Kim, Yong Hyeon;Choi, Dong Geun
    • Horticultural Science & Technology
    • /
    • v.19 no.3
    • /
    • pp.367-372
    • /
    • 2001
  • 'Kyoho' grape (Vitis labruscana L.) has currently cropped twice a year in plastic greenhouses. However, there are problems with low fruit quality in the second cropping owing to low temperatures and short photoperiods. This experiment was conducted to investigate the effect of root zone heating and $CO_2$ enrichment in plastic greenhouse on the vine growth and fruit quality of 'Kyoho' grape in double cropping system. The internode length of shoots, leaf area and leaf dry weight at the treatment of soil heating near root zone was significantly different regardless of $CO_2$ enrichment. There were no significant differences in fruit bunch and berry weight, titratable acidity, coloration degree and berry shattering among the treatments, but the soluble solids significantly increased by root zone heating. Photosynthetic rate increased with increasing $CO_2$ concentration from 300 to $800{\mu}mol{\cdot}mol^{-1}$ in sunny day, whereas it didn't increase in cloudy day regardless of $CO_2$ enrichment.

  • PDF

Screening of Rhizobacteria for Biological Control of Cucumber Root and Crown Rot Caused by Phytophthora drechsleri

  • Maleki, Mojdeh;Mokhtarnejad, Lachin;Mostafaee, Somayyeh
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.78-84
    • /
    • 2011
  • Antagonistic rhizobacteria, more specifically fluorescent pseudomonads and certain species of Bacillus, are known as biocontrol agents of fungal root diseases of agronomic crops. In this study, 144 bacteria were isolated from cucumber rhizosphere and screened as potential biological control agents against Phytophthora drechsleri, the causal agent of cucumber root rot, in vitro condition. Non-volatile compounds of 23 isolates showed noticeable inhibition zone (> 30%) against P. drechsleri, whereas volatile compounds of 7 isolates could prevent more than 30% of the mycelial growth of the fungus. All promising isolates, except of Pseudomonas flourescens V69, promoted significantly plant growth under in vitro condition. P. flourescens CV69 and V11 exhibited the highest colonization on the root. Results of the greenhouse studies showed that a reduction in disease incidence by use of some strains, and particularly use of strains CV6 and V11 as a soil treatment, exhibited a reduction in disease incidence so that suppressed disease by 85.71 and 69.39% respectively. Pseudomonas flourescens CV6 significantly suppressed disease in comparison to Ridomil fungicide. The use of mixture bacterial strains in the soil inoculated by the fungus resulting in falling down the most of the plants which didn't show significant difference with infected control soils without bacteria.

SCFFBS1 Regulates Root Quiescent Center Cell Division via Protein Degradation of APC/CCCS52A2

  • Geem, Kyoung Rok;Kim, Hyemin;Ryu, Hojin
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.695-701
    • /
    • 2022
  • Homeostatic regulation of meristematic stem cells accomplished by maintaining a balance between stem cell self-renewal and differentiation is critical for proper plant growth and development. The quiescent center (QC) regulates root apical meristem homeostasis by maintaining stem cell fate during plant root development. Cell cycle checkpoints, such as anaphase promoting complex/cyclosome/cell cycle switch 52 A2 (APC/CCCS52A2), strictly control the low proliferation rate of QC cells. Although APC/CCCS52A2 plays a critical role in maintaining QC cell division, the molecular mechanism that regulates its activity remains largely unknown. Here, we identified SCFFBS1, a ubiquitin E3 ligase, as a key regulator of QC cell division through the direct proteolysis of CCS52A2. FBS1 activity is positively associated with QC cell division and CCS52A2 proteolysis. FBS1 overexpression or ccs52a2-1 knockout consistently resulted in abnormal root development, characterized by root growth inhibition and low mitotic activity in the meristematic zone. Loss-of-function mutation of FBS1, on the other hand, resulted in low QC cell division, extremely low WOX5 expression, and rapid root growth. The 26S proteasome-mediated degradation of CCS52A2 was facilitated by its direct interaction with FBS1. The FBS1 genetically interacted with APC/CCCS52A2-ERF115-PSKR1 signaling module for QC division. Thus, our findings establish SCFFBS1-mediated CCS52A2 proteolysis as the molecular mechanism for controlling QC cell division in plants.

Soil-Plant-Water Relations and the Importance in Horticultural Crops

  • Myeong, No-Hui
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.11a
    • /
    • pp.3-19
    • /
    • 2001
  • Where temperature permits plant growth, the existence of plants is controlled chiefly by the water availability. Without water, plants cannot grow, and man and animals cannot survive. With too much water, plant growth is also rather limited due partly to oxygen deficit in root zone (Ro et al., 1995). The objective of this seminar is to discuss the most important aspects of water management in relation to crop production and environmental conservation. (omitted)

  • PDF

Exploring Planting Strategies through Monitoring of a Greenspace Established in the Riparian Zone - The Case of an Implementation Site in Gapyeong County - (수변구역 조성 녹지의 모니터링을 통한 식재방안 모색 - 가평군 시공지를 대상으로 -)

  • Jo, Hyun-Kil;Park, Hye-Mi
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1689-1699
    • /
    • 2016
  • The growth conditions of planted trees, invasion of nuisance herbaceous species, competition between species, and effects of erosion control were monitored over five years in a riparian greenspace in Gapyeong County that was established through multilayered and grouped ecological planting. Of 156 trees planted in the upper and middle layers, 5.8% died. This tree death was attributed to poor drainage or aeration in the rooting zone from the clay-added root ball and too deep planting as well as a small-sized root ball and scanty fine roots. Of all the trees, 21.6% grew poorly due to transplant stress in the first year after planting, but they started to grow vigorously in the third year. This good growth was largely associated with soil improvement before planting, selection of appropriate tree species based on growth ground, and control of dryness and invasive climbing plants through surface mulching and multilayered/grouped planting. Mixed planting of fast-growing species as temporary trees was desirable for accelerating planting effect and increasing planting density. Thinning of fast-growing trees was required in the fifth year after planting to avoid considerable competition with target species. To reduce the invasion of herbaceous and climbing plants that oppress normal growth of planted trees, higher density planting of trees (crown opening of about 15%), woodchip mulching to a 10-cm depth, and edge planting 2 m wide were more effective than lower density planting (crown opening of 70%), no surface mulching, and no edge planting, respectively. This reduction effect was especially great during the first three years after planting. Nuisance herbaceous plants rarely invaded higher density planting with woodchip mulching over the five years. Higher density planting or woodchip mulching also showed much greater erosion control through rainfall interception and buffering than lower density planting with no mulching did. Based on these results, desirable planting and management strategies are suggested to improve the functions of riparian greenspaces.

Interface chemistry of SiC/Co reaction (SiC/Co 반응의 계면화학)

  • ;Hubertus Nickel
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.2
    • /
    • pp.109-121
    • /
    • 1995
  • Reaction coulples of SiC with cobalt were annealed in an Ar/4 vol% $H_2$ atmosphere at temperatures between $950^{\circ}C$ and $1250^{\circ}C$for various times between 4 and 100 h. At temperatures above $950^{\circ}C$, solid state reactions lead to the formation of various silicides with carbon precipitates. The typical reaction layer sequence was $SiC/CoSi + C/CozSi + C/CozSi/CozSi + C/{\cdot\cdot\}/CO_2Si/CO$ in the reaction zone. The mechanism of the periodic band structure formation with the carbon precipitation behaviour was examined and discussed in terms of reaction kinetics and thermodynamic considerations. The growth of the reaction zone has a square root of time dependence. The reaction kinetics is proposed to estimate the effective reaction constant from the parabolic gowth of the reaction zone. The mechanical properties of the reaction zones were determined by the microhardness test.

  • PDF

Fus Expression Patterns in Developing Tooth

  • Kim, Eun-Jung;Lee, Jong-Min;Jung, Han-Sung
    • Development and Reproduction
    • /
    • v.17 no.3
    • /
    • pp.215-220
    • /
    • 2013
  • Recently, the RNA/DNA-binding protein FUS, Fused in sarcoma, was shown to play a role in growth, differentiation, and morphogenesis in vertebrates. Because little is known about Fus, we investigated its expression pattern in murine tooth development. In situ hybridization of mouse mandibles at specific developmental stages was performed with a DIG-labeled RNA probe. During early tooth development, Fus was detected in the dental epithelium and dental mesenchyme at 11 days postcoitum (dpc) and 12 dpc. From 14 dpc, Fus was strongly expressed in the dental papilla and the cervical loop of the dental epithelium. At postnatal day 4 (PN4), Fus expression was observed in the odontoblasts, ameloblasts, the proliferation zone of the pulp, and the cervical loop. At PN14, the expression pattern of Fus was found to be maintained in the odontoblasts and the proliferation zone of the pulp. Furthermore, Fus expression was especially strong in the Hertwig's epithelial root sheath (HERS). Therefore, this study suggests that Fus may play a role in the HERS during root development.

Root-zone Temperature Control of Tomato Plant Cultivated in Perlite Bag during Summer Season (고온기 펄라이트 자루재배시 최적 근권온도 조절방법)

  • Kim, Sung-Eun;Kim, Young-Shik;Sim, Sang-Youn
    • Horticultural Science & Technology
    • /
    • v.29 no.2
    • /
    • pp.102-109
    • /
    • 2011
  • This research was conducted to establish efficient methods to control root-zone temperature of tomato plant when cultivated in perlite bag during the summer season. Tomato plants were grown with four selected treatments; covering irrigation pipe by aluminum insulation material (Insulate), discarding nutrient solution inside the irrigation line before each irrigation (Discard), skipping irrigation for two hours from 13:00 to 15:00 (Skip), or no treatment as a control (Non). Based on the analysis of plant development index, all plants with selected treatments grew more vigorous and vegetative in similar growth patterns. The discard treatment exhibited the best root-zone temperature control among the treatments. The discard treatment also resulted in the best root growth and above-ground growth, followed by skip, Insulate and Non. The total yields were obtained by the order of Insulate, Discard, Non and Skip. However the marketable yield was obtained by the order of Discard, Insulate, Skip and Non. The net incomes treated with Discard and Insulate were 9,687,600 and 9,396,000 Korean won per hectare, respectively, exhibiting higher incomes than that of Non. Therefore, it was concluded that insulation of the irrigation pipe and discarding nutrient solution inside the pipe before each irrigation were the most desirable and economical methods in terms of costs and yields.