• Title/Summary/Keyword: Root Mean Square

Search Result 2,096, Processing Time 0.03 seconds

Comparison of Image Quality among Different Computed Tomography Algorithms for Metal Artifact Reduction (금속 인공물 감소를 위한 CT 알고리즘 적용에 따른 영상 화질 비교)

  • Gui-Chul Lee;Young-Joon Park;Joo-Wan Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.541-549
    • /
    • 2023
  • The aim of this study wasto conduct a quantitative analysis of CT image quality according to an algorithm designed to reduce metal artifacts induced by metal components. Ten baseline images were obtained with the standard filtered back-projection algorithm using spectral detector-based CT and CT ACR 464 phantom, and ten images were also obtained on the identical phantom with the standard filtered back-projection algorithm after inducing metal artifacts. After applying the to raw data from images with metal artifacts, ten additional images for each were obtained by applying the virtual monoenergetic algorithm. Regions of interest were set for polyethylene, bone, acrylic, air, and water located in the CT ACR 464 phantom module 1 to conduct compare the Hounsfield units for each algorithm. The algorithms were individually analyzed using root mean square error, mean absolute error, signal-to-noise ratio, peak signal-to-noise ratio, and structural similarity index to assess the overall image quality. When the Hounsfield units of each algorithm were compared, a significant difference was found between the images with different algorithms (p < .05), and large changes were observed in images using the virtual monoenergetic algorithm in all regions of interest except acrylic. Image quality analysis indices revealed that images with the metal artifact reduction algorithm had the highest resolution, but the structural similarity index was highest for images with the metal artifact reduction algorithm followed by an additional virtual monoenergetic algorithm. In terms of CT images, the metal artifact reduction algorithm was shown to be more effective than the monoenergetic algorithm at reducing metal artifacts, but to obtain quality CT images, it will be important to ascertain the advantages and differences in image qualities of the algorithms, and to apply them effectively.

The Effect of Corporate Association on the Perceived Risk of the Product (소비자의 제품 지각 위험에 대한 기업연상과 효과: 지식과 관여의 조절적 역활을 중심으로)

  • Cho, Hyun-Chul;Kang, Suk-Hou;Kim, Jin-Yong
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.1-32
    • /
    • 2008
  • Brown and Dacin (1997) have investigated the relationship between corporate associations and product evaluations. Their study focused on the effects of associations with a company's corporate ability (CA) and its corporate social responsibility (CSR) on consumers' product evaluations. Their study has found that both of CA and CSR influenced product evaluation but CA association has a stronger effect than CSR associations. Brown and Dacin (1997) have, however, claimed that there are few researches on how corporate association impacts product responses. Accordingly, some of researchers have found the variables to moderate or to mediate the relationship between the corporate association and the product responses. In particular, there has been existed a few of studies that tested the influence of the reputation on the product-relevant perceived risk, but the effects of two types of the corporate association on the product-relevant perceived risk were not identified so far. The primary goal of this article is to identify and empirically examine some variables to moderate the effects of CA association and CSR association on the perceived risk of the product. In this articles, we take the concept of the corporate associations that Brown and Dacin (1997) had proposed. CA association is those association related to the company's expertise in producing and delivering its outputs and CSR association reflected the organization's status and activities with respect to its perceived societal obligations. Also, this study defines the risk, which is the uncertainty or loss of the product and corporate that consumers have taken in a particular purchase decision or after having purchased. The risk is classified into product-relevant performance risk and financial risk. Performance risk is the possibility or the consequence of a product not functioning at some expected level and financial risk is the monetary loss one perceives to be incurring if a product does not function at some expected level. In relation to consumer's knowledge, expert consumers have much of the experiences or knowledge of the product in consumer position and novice consumers does not. The model tested in this article are shown in Figure 1. The model indicates that both of CA association and CSR association influence on performance risk and financial risk. In addition, the effects of CA and CSR are moderated by product category knowledge (product knowledge) and product category involvement (product involvement). In this study, the relationships between the corporate association and product-relevant perceived risk are hypothesized as the following form. For example, Hypothesis 1a($H_{1a}$) is represented that CA association has a positive influence on the performance risk of consumer. Also, the hypotheses that identified some variables to moderate the effects of two types of corporate association on the perceived risk of the product are laid down. One of the hypotheses of the interaction effect is Hypothesis 3a($H_{3a}$), it is described that consumer's knowledges of the product moderates the negative relationship between CA association and product-relevant performance risk. A field experiment was conducted in order to examine our model. The company tested was not real but imagined to meet the internal validity. Water purifiers were used for our study. Four scenarios have been developed and described as the imaginary company: Type A with both of superior CA and CSR, Type B with superior CSR and inferior CA, Type C with superior CA and inferior CSR, and Type D with both inferior of CA and CSR. The respondents of this study were classified into four groups. One type of four scenarios (Type A, B, C, or D) in its questionnaire was given to the respondent who filled out questions. Data were collected by means of a self-administered questionnaire to the respondents, chosen in convenience. A total of 300 respondents filled out the questionnaire but 207 were used for further analysis. Table 1 indicates that the scales in this study are reliable because the range of coefficients of Cronbach's $\alpha$ are from 0.85 to 0.92. The composite reliability is in the range of 0,85 to 0,92 and average variance extracted is in 0.72-0.98 range that is higher than the base level of 0.6. As shown in Table 2, the values for CFI, NNFI, root-mean-square error approximation (RMSEA), and standardized root-mean-square residual (SRMR) are acceptably close to the standards suggested by Hu and Bentler (1999):.95 for CFI and NNFI,.06 for RMSEA, and.08 for SRMR. We also tested discriminant validity provided by Fornell and Larcker (1981). As shown in Table 2, we found strong evidence for discriminant validity between each possible pair of latent constructs in all samples. Given that these batteries of overall goodness-of-fit indices were accurate and that the model was developed on theoretical bases, and given the high level of consistency across samples, this enables us to proceed the previously defined scales. We used the moderated hierarchical regression analysis to test the influence of the corporate association(CA and CSR associations) on product-relevant perceived risk(performance and financial risks) and to identify the variables moderating the relationship between the corporate association and product-relevant performance risk. In this study, dependent variables are performance and financial risk. CA and CSR associations are described the independent variables. The moderating variables are product category knowledge and product category involvement. The results are, as expected, found that CA association has statistically a significant influence on the perceived risk of the product, but CSR association does not. Product category knowledge and involvement moderate the relationship between the CA association and the perceived risk of the product. However, the effect of CSR association on the perceived risk of the product is not moderated by the consumers' knowledge and involvement. For this result, it is necessary for a corporate to inform its customers CA association more than CSR association so that they could be felt to be the reduction of the perceived risk. The important theoretical contribution of this research is the meanings that two types of corporate association that Brown and Dacin(1997), and Brown(1998) have proposed replicated the difference of the effects on product evaluation. According to Hunter(2001), it was an important affair to accomplish the validity of a particular study and we had to take about ten studies to deduce a strict study. Next, there is the contribution of the this study to find that the effects of corporate association on the perceived risk of the product are varied by the moderator variables. In particular, the moderating effect of knowledge on the relationship between corporate association and product-relevant perceived risk has not been tested in Korea. In the managerial implications of this research, we suggest the necessity to stress the ability that corporate manufactures the product well(CA association) than the accomplishment of corporate's social obligation(CSR association). This study suffers from various limitations that imply future research directions. The moderating effects of product category knowledge and involvement on the relationship between corporate association and perceived risk need to be replicated. Next, future research could explore whether the mediated effects of the perceived risk has the relationship between corporate association and consumer's product purchase. In addition, to ensure the external validity of the study will be needed to use realistic company, not artificial.

  • PDF

Quality Assurance of Leaf Speed for Dynamic Multileaf Collimator (MLC) Using Dynalog Files (Dynalog file을 이용한 동적다엽조준기의 Leaf 속도 정도관리 평가)

  • Kim, Joo Seob;Ahn, Woo Sang;Lee, Woo Suk;Park, Sung Ho;Choi, Wonsik;Shin, Seong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.305-312
    • /
    • 2014
  • Purpose : The purpose of this study is to analyze the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC) and determine the appropriate period of quality assurance (QA). Materials and Methods : The quality assurance of the DMLC equipped with Millennium 120 leaves has been performed total 92 times from January 2012 to June 2014. The the accuracy of leaf position and isocenter coincidence for MLC were checked using the graph paper and Gafchromic EBT film, respectively. The stability of leaf speed was verified using a test file requiring the leaves to reach maximum leaf speed during the gantry rotation. At the end of every leaf speed QA, dynamic dynalog files created by MLC controller were analyzed using dynalog file viewer software. This file concludes the information about the planned versus actual position for all leaves and provides error RMS (root-mean square) for individual leaf deviations and error histogram for all leaf deviations. In this study, the data obtained from the leaf speed QA were used to screen the performance degradation of leaf speed and determine the need for motor replacement. Results : The leaf position accuracy and isocenteric coincidence of MLC was observed within a tolerance range recommanded from TG-142 reports. Total number of motor replacement were 56 motors over whole QA period. For all motors replaced from QA, gradually increased patterns of error RMS values were much more than suddenly increased patterns of error RMS values. Average error RMS values of gradually and suddenly increased patterns were 0.298 cm and 0.273 cm, respectively. However, The average error RMS values were within 0.35 cm recommended by the vendor, motors were replaced according to the criteria of no counts with misplacement > 1 cm. On average, motor replacement for gradually increased patterns of error RMS values 22 days. 28 motors were replaced regardless of the leaf speed QA. Conclusion : This study performed the periodic MLC QA for analyzing the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC). The leaf position accuracy and isocenteric coincidence showed whthin of MLC evaluation is observed within the tolerance value recommanded by TG-142 report. Based on the result obtained from leaf speed QA, we have concluded that QA protocol of leaf speed for DMLC was performed at least bimonthly in order to screen the performance of leaf speed. The periodic QA protocol can help to ensure for delivering accurate IMRT treatment to patients maintaining the performance of leaf speed.

Evaluation of Factors Used in AAPM TG-43 Formalism Using Segmented Sources Integration Method and Monte Carlo Simulation: Implementation of microSelectron HDR Ir-192 Source (미소선원 적분법과 몬테칼로 방법을 이용한 AAPM TG-43 선량계산 인자 평가: microSelectron HDR Ir-192 선원에 대한 적용)

  • Ahn, Woo-Sang;Jang, Won-Woo;Park, Sung-Ho;Jung, Sang-Hoon;Cho, Woon-Kap;Kim, Young-Seok;Ahn, Seung-Do
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.190-197
    • /
    • 2011
  • Currently, the dose distribution calculation used by commercial treatment planning systems (TPSs) for high-dose rate (HDR) brachytherapy is derived from point and line source approximation method recommended by AAPM Task Group 43 (TG-43). However, the study of Monte Carlo (MC) simulation is required in order to assess the accuracy of dose calculation around three-dimensional Ir-192 source. In this study, geometry factor was calculated using segmented sources integration method by dividing microSelectron HDR Ir-192 source into smaller parts. The Monte Carlo code (MCNPX 2.5.0) was used to calculate the dose rate $\dot{D}(r,\theta)$ at a point ($r,\theta$) away from a HDR Ir-192 source in spherical water phantom with 30 cm diameter. Finally, anisotropy function and radial dose function were calculated from obtained results. The obtained geometry factor was compared with that calculated from line source approximation. Similarly, obtained anisotropy function and radial dose function were compared with those derived from MCPT results by Williamson. The geometry factor calculated from segmented sources integration method and line source approximation was within 0.2% for $r{\geq}0.5$ cm and 1.33% for r=0.1 cm, respectively. The relative-root mean square error (R-RMSE) of anisotropy function obtained by this study and Williamson was 2.33% for r=0.25 cm and within 1% for r>0.5 cm, respectively. The R-RMSE of radial dose function was 0.46% at radial distance from 0.1 to 14.0 cm. The geometry factor acquired from segmented sources integration method and line source approximation was in good agreement for $r{\geq}0.1$ cm. However, application of segmented sources integration method seems to be valid, since this method using three-dimensional Ir-192 source provides more realistic geometry factor. The anisotropy function and radial dose function estimated from MCNPX in this study and MCPT by Williamson are in good agreement within uncertainty of Monte Carlo codes except at radial distance of r=0.25 cm. It is expected that Monte Carlo code used in this study could be applied to other sources utilized for brachytherapy.

L-band SAR-derived Sea Surface Wind Retrieval off the East Coast of Korea and Error Characteristics (L밴드 인공위성 SAR를 이용한 동해 연안 해상풍 산출 및 오차 특성)

  • Kim, Tae-Sung;Park, Kyung-Ae;Choi, Won-Moon;Hong, Sungwook;Choi, Byoung-Cheol;Shin, Inchul;Kim, Kyung-Ryul
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.477-487
    • /
    • 2012
  • Sea surface winds in the sea off the east coast of Korea were derived from L-band ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band Synthetic Aperture Radar) data and their characteristics of errors were analyzed. We could retrieve high-resolution wind vectors off the east coast of Korea including the coastal region, which has been substantially unavailable from satellite scatterometers. Retrieved SAR-wind speeds showed a good agreement with in-situ buoy measurement by showing relatively small an root-mean-square (RMS) error of 0.67 m/s. Comparisons of the wind vectors from SAR and scatterometer presented RMS errors of 2.16 m/s and $19.24^{\circ}$, 3.62 m/s and $28.02^{\circ}$ for L-band GMF (Geophysical Model Function) algorithm 2009 and 2007, respectively, which tended to be somewhat higher than the expected limit of satellite scatterometer winds errors. L-band SAR-derived wind field exhibited the characteristic dependence on wind direction and incidence angle. The previous version (L-band GMF 2007) revealed large errors at small incidence angles of less than $21^{\circ}$. By contrast, the L-band GMF 2009, which improved the effect of incidence angle on the model function by considering a quadratic function instead of a linear relationship, greatly enhanced the quality of wind speed from 6.80 m/s to 1.14 m/s at small incident angles. This study addressed that the causes of wind retrieval errors should be intensively studied for diverse applications of L-band SAR-derived winds, especially in terms of the effects of wind direction and incidence angle, and other potential error sources.

Recent Trends in Blooming Dates of Spring Flowers and the Observed Disturbance in 2014 (최근의 봄꽃 개화 추이와 2014년 개화시기의 혼란)

  • Lee, Ho-Seung;Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.396-402
    • /
    • 2014
  • The spring season in Korea features a dynamic landscape with a variety of flowers such as magnolias, azaleas, forsythias, cherry blossoms and royal azaleas flowering sequentially one after another. However, the narrowing of south-north differences in flowering dates and those among the flower species was observed in 2014, taking a toll on economic and shared communal values of seasonal landscape. This study was carried out to determine whether the 2014 incidence is an outlier or a mega trend in spring phenology. Data on flowering dates of forsythias and cherry blossoms, two typical spring flower species, as observed for the recent 60 years in 6 weather stations of Korea Meteorological Administration (KMA) indicate that the difference spanning the flowering date of forsythias, the flower blooming earlier in spring, and that of cherry blossoms that flower later than forsythias was 30 days at the longest and 14 days on an average in the climatological normal year for the period 1951-1980, comparing with the period 1981-2010 when the difference narrowed to 21 days at the longest and 11 days on an average. The year 2014 in particular saw the gap further narrowing down to 7 days, making it possible to see forsythias and cherry blossoms blooming at the same time in the same location. 'Cherry blossom front' took 20 days in traveling from Busan, the earliest flowering station, to Incheon, the latest flowering station, in the case of the 1951-1980 normal year, while 16 days for the 1981-2010 and 6 days for 2014 were observed. The delay in flowering date of forsythias for each time period was 20, 17, and 12 days, respectively. It is presumed that the recent climate change pattern in the Korean Peninsula as indicated by rapid temperature hikes in late spring contrastive to slow temperature rise in early spring immediately after dormancy release brought forward the flowering date of cherry blossoms which comes later than forsythias which flowers early in spring. Thermal time based heating requirements for flowering of 2 species were estimated by analyzing the 60 year data at the 6 locations and used to predict flowering date in 2014. The root mean square error for the prediction was within 2 days from the observed flowering dates in both species at all 6 locations, showing a feasibility of thermal time as a prognostic tool.

Analysis of Empirical Multiple Linear Regression Models for the Production of PM2.5 Concentrations (PM2.5농도 산출을 위한 경험적 다중선형 모델 분석)

  • Choo, Gyo-Hwang;Lee, Kyu-Tae;Jeong, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.283-292
    • /
    • 2017
  • In this study, the empirical models were established to estimate the concentrations of surface-level $PM_{2.5}$ over Seoul, Korea from 1 January 2012 to 31 December 2013. We used six different multiple linear regression models with aerosol optical thickness (AOT), ${\AA}ngstr{\ddot{o}}m$ exponents (AE) data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites, meteorological data, and planetary boundary layer depth (PBLD) data. The results showed that $M_6$ was the best empirical model and AOT, AE, relative humidity (RH), wind speed, wind direction, PBLD, and air temperature data were used as input data. Statistical analysis showed that the result between the observed $PM_{2.5}$ and the estimated $PM_{2.5}$ concentrations using $M_6$ model were correlations (R=0.62) and root square mean error ($RMSE=10.70{\mu}gm^{-3}$). In addition, our study show that the relation strongly depends on the seasons due to seasonal observation characteristics of AOT, with a relatively better correlation in spring (R=0.66) and autumntime (R=0.75) than summer and wintertime (R was about 0.38 and 0.56). These results were due to cloud contamination of summertime and the influence of snow/ice surface of wintertime, compared with those of other seasons. Therefore, the empirical multiple linear regression model used in this study showed that the AOT data retrieved from the satellite was important a dominant variable and we will need to use additional weather variables to improve the results of $PM_{2.5}$. Also, the result calculated for $PM_{2.5}$ using empirical multi linear regression model will be useful as a method to enable monitoring of atmospheric environment from satellite and ground meteorological data.

The Change of Heart Rate Variability in Anxiety Disorder after Given Physical or Psychological Stress (불안장애 환자에서 육체적 및 정신적 스트레스 시 심박변이도의 변화)

  • Cho, Min-Kyung;Park, Doo-Heum;Yu, Jaehak;Ryu, Seung-Ho;Ha, Ji-Hyeon
    • Sleep Medicine and Psychophysiology
    • /
    • v.21 no.2
    • /
    • pp.69-73
    • /
    • 2014
  • Objectives: This study was designed to assess the change of heart rate variability (HRV) at resting, upright, and psychological stress in anxiety disorder patients. Methods: HRV was measured at resting, upright, and psychological stress states in 60 anxiety disorder patients. We used visual analogue scale (VAS) score to assess tension and stress severity. Beck depression inventory (BDI) and state trait anxiety inventories I and II (STAI-I and II) were used to assess depression and anxiety severity. Differences between HRV indices were evaluated using paired t-tests. Gender difference analysis was accomplished with ANCOVA. Results: SDNN (Standard deviation of normal RR intervals) and low frequency/high frequency (LF/HF) were significantly increased, while NN50, pNN50, and normalized HF (nHF) were significantly decreased in the upright position compared to resting state (p < 0.01). SDNN, root mean square of the differences of successive normal to normal intervals, and LF/HF were significantly increased, while nHF was significantly decreased in the psychological stress state compared to resting state (p < 0.01). SDNN, NN50, pNN50 were significantly lower in upright position compared to psychological stress and nVLF, nLF, nHF, and LF/HF showed no significant differences between them. Conclusion: The LF/HF ratio was significantly increased after both physical and psychological stress in anxiety disorder, but did not show a significant difference between these two stresses. Significant differences of SDNN, NN50, and pNN50 without any differences of nVLF, nLF, nHF, and LF/HF between two stresses might suggest that frequency domain analysis is more specific than time domain analysis.

A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain (지형보정계수를 이용한 복잡지형의 일 적산일사량 분포 추정)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio ($W_i$) between sloping and horizontal surface is defined as multiplication of the relative solar intensity($k_i$) and the slope irradiance ratio($r_i$) at an hourly interval. The $k_i$ is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The $r_i$ is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of $W_i$ on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano(c.a., 570m diameter for the bottom circle and 90m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error(RMSE) of $1.61MJ\;m^{-2}$ for the whole period but the RMSE for April to October(i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape scales with the operational reliability in cropping season.

Validation of Sea Surface Wind Speeds from Satellite Altimeters and Relation to Sea State Bias - Focus on Wind Measurements at Ieodo, Marado, Oeyeondo Stations (인공위성 고도계 해상풍 검증과 해상상태편차와의 관련성 - 이어도, 마라도, 외연도 해상풍 관측치를 중심으로 -)

  • Choi, Do-Young;Woo, Hye-Jin;Park, Kyung-Ae;Byun, Do-Seong;Lee, Eunil
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.139-153
    • /
    • 2018
  • The sea surface wind field has long been obtained from satellite scatterometers or passive microwave radiometers. However, the importance of satellite altimeter-derived wind speed has seldom been addressed because of the outstanding capability of the scatterometers. Satellite altimeter requires the accurate wind speed data, measured simultaneously with sea surface height observations, to enhance the accuracy of sea surface height through the correction of sea state bias. This study validates the wind speeds from the satellite altimeters (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and analyzes characteristics of errors. In total, 1504 matchup points were produced using the wind speed data of Ieodo Ocean Research Station (IORS) and of Korea Meteorological Administration (KMA) buoys at Marado and Oeyeondo stations for 10 years from December 2007 to May 2016. The altimeter wind speed showed a root mean square error (RMSE) of about $1.59m\;s^{-1}$ and a negative bias of $-0.35m\;s^{-1}$ with respect to the in-situ wind speed. Altimeter wind speeds showed characteristic biases that they were higher (lower) than in-situ wind speeds at low (high) wind speed ranges. Some tendency was found that the difference between the maximum and minimum value gradually increased with distance from the buoy stations. For the improvement of the accuracy of altimeter wind speed, an equation for correction was derived based on the characteristics of errors. In addition, the significance of altimeter wind speed on the estimation of sea surface height was addressed by presenting the effect of the corrected wind speeds on the sea state bias values of Jason-1.