• Title/Summary/Keyword: Room fire test

Search Result 131, Processing Time 0.023 seconds

The Evaluation of Fire Safety Performance on Interior Finish Materials (Gypsum Board, Plywood) (건물내장재(석고보드, 합판)의 화재성능평가)

  • 김충환;김종훈;김운형;하동명;이수경
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.55-62
    • /
    • 2001
  • The fire performance evaluation methods in Korea and overseas for interior finish materials were analysed and tested with gypsum board and Plywood by using room corner test not adopted by domestic code until now. The results of gypsum board (thickness:8 mm) and Plywood (thickness:4 mm) applying NFPA 265 and ISO 9705 test respectively are satisfied the assessment criteria. To assess a actual fire performance and classify fire hazard levels for interior finish materials, room-corner test and flame spread models should be adopted in building code and fire code to overcome limitations of current bench-scale test method.

  • PDF

A Study on the Fire Characteristics of Sandwich Panels by ISO 9705 - Full-scale Room Test (ISO 9705 - Full-scale Room Test 시험방법을 이용한 샌드위치 패널의 화재 특성 연구)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl;Lee, Jeong-Il
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.39-45
    • /
    • 2009
  • This paper studied on the fire characteristics of sandwich panels by ISO 9705 test (Full-scale room test). A comprehensive fire characteristics of sandwich panel was analyzed by applying the test result to the classification standard according to EN 13501-1 and Eurefic Research Program. Consequently, glass wool foam sandwich panel proved to be A class, incombustible - EPS Foam and incombustible - PUR Foam sandwich panels was class B. Also, EPS foam and PUR foam sandwich panels was class C because of flashover.

Development of an Inert Gas Water Mist System -A Numerical Study on Ventilation of the Fire Test Room- (불활성가스 미분무소화설비의 개발 -화재시험실의 급기에 관한 수치연구-)

  • Park, Woe-Chul;Jeong, Lee-Gyu
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • A Numerical study was carried out for a propane gas pool fire in the fire test room of $2.5m{\times}2.0m{\times}2.5m$ for testing a inert gas water mist system, to investigate a possible under-ventilation in the fire test room. For the fire sizes of 60 kW and 120 kW, changes in the temperature and CO concentration with and without a window were investigated. It was confirmed that the influence of the window on the distributions of temperature and CO concentration was small in the two fire sizes, and hence the under-ventilation was not occurred in the room.

  • PDF

A Reliability Analysis on FDS Pyrolysis Model through Comparing the Room-Corner (ISO 9705) Test (룸 코너 콘 칼로리미터 시험(ISO 9705)과 비교를 통한 FDS 열분해 모델의 신뢰성 분석)

  • Yang, Sung-Jin;Lee, Chang-Deok;Oh, Ji-Eun;Kang, Chan-Yong;Kim, Hag-Beom;Lee, Duck-Hee
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.585-593
    • /
    • 2011
  • Actual fire test under a laboratory and fire simulation by using computer are considered into main methodology in order to estimate and predict fire size of railway train. Even if practical fire size could be obtained from the full-model railway car test such as a large scale cone-calorimeter test, it is not always possible and realistic due to that expensive cost and attendant dangers could in no way be negligible. In this point of view, fire simulation analysis method based on the computational fluid dynamics could be proposed as an alternative and it seems to be also efficient and reasonable. However, simulation results have to be verified and validated in accordance with the proper procedure including comparing analysis with the actual fire test. In this paper, fire load and growth aspect was investigated through the room corner test (ISO 9705) for the mock-up model of the actual railway car. Then, it was compared with the output data derived from the simulation by using Pyrolysis Model of the FDS (Fire Dynamics Simulator, by NIST) for the exact same domain and condition corresponding with pre-performed room-corner test. This preliminary verified and validated fire modeling method could enhance the reliability of output data derived from the fire simulation under the similar domain and condition.

  • PDF

Classification of Reaction-to-Fire's Performances on Sandwich Panel Systems by Applying to ISO 13784-1 Fire Tests (실대규모 화재시험(ISO 13784-1)을 적용한 샌드위치 패널 시스템의 연소성능 분류)

  • Park, Kye-Won;Im, Hong-Soon;Jeong, Jae-Gun;Lee, Gil-Yong;Kim, Jeong-Uk;Jeong, Jeong-Ho;Lee, Woo-Seok;Kim, Woon-Hyung
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.20-26
    • /
    • 2009
  • Reaction-to-Fire's performances such as combustion properties of sandwich panels were tested according to ISO 13784-1 (room corner test for sandwich panel building systems) method which is made for the purpose of supplementing ISO 9705 room corner test, and analyzed comparatively. Several variables including heat release rate, smoke production rate, FIGRA, SMOGRA, thermal configuration, visual check lists and so on, were analyzed for specific four materials on sandwich panel systems. Finally, Reaction-to-Fire's performances of test results on each material by ISO 13784-1 are categorized by applying to the classification systems of both EN 13501-1 and Eurefic Research Program.

ISO 9705 Room-Corner Test & Model simulations (ISO 9705 Room-Corner Test와 모델 평가)

  • ;S.E. Dillom;J,G Quintiere
    • Fire Science and Engineering
    • /
    • v.13 no.2
    • /
    • pp.3-11
    • /
    • 1999
  • New examination of a predictive model for the ISO 9705 room-corner test have been m made for materials studied by L S Fire Laboratories, Italy. The ISO 9705 test subjects wall a and ceiling mounted materials to a comer ignition source of 100 kW for a duration of 10 m minutes; if flashover does not occur this is followed by 300 kW for another 10 minutes. The m materials that did not stay in place during combustion because of melting, dripping, or d distorting were simulated by an adjustment to the material's total available energy. For m mat려als that remain in place the simulation model appears to do well in its prl어ictions. A l large-s떠Ie room test results 뾰 compar벼 with the m여el’s prediction also.

  • PDF

Experimental study of water membrane sprinkler in fire prevention block (방화구획과 수막설비 관한 연구)

  • Oh, Chang-Hui;Son, Jang-Yeol;Kim, Hwa-Jung;Kim, Sang-Uk;Choi, Jin
    • Fire Science and Engineering
    • /
    • v.2 no.3
    • /
    • pp.3-9
    • /
    • 1988
  • This paper is study about establishment with water membrane sprinkler in fire prevention block of special Building. The testing program was directed toward investigating the temperature of fire and adjacent room. The results of fire test indicated that under the test conditions in this study, adjacent room temperature is very low in compare with fire room temperature at operating of water membrane sprinkler. Therefore, if exclusion of smoking can be soluted, substitution of water membrance sprinkler in fire resistance wall of fire prevention block is possible.

  • PDF

An Experimental Study on the Warehouse Mock-up Fire Test (창고 모델 실물화재 특성에 대한 실험적 연구)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.47-54
    • /
    • 2010
  • This study is analyze the damage of warehouse fire accident be made through the fire characteristic database of combustibles and real scale fire test of warehouse mock-up. Combustibles fire tests are carried out for database using RCT (Room Corner Tester) to predict fire growth the goods. A mockup ($3m{\times}3m{\times}2.4m$) of clothes warehouse was built and real scale fire test by LSC (Large Scale Calorimeter) base on the fire characteristic DB. The mock-up of clothes warehouse is made of two type sandwich panels (Glass wool, EPS foam sandwich panel). As a mock-up test result, test 1 (Glass wool sandwich panel) and test 2 (EPS foam sandwich panel) indicating fire growth such as 5 MW, 11 MW of maximum HRR (Heat Release Rate).