• Title/Summary/Keyword: Room fire

Search Result 531, Processing Time 0.027 seconds

Effects of the structural strength of fire protection insulation systems in offshore installations

  • Park, Dae Kyeom;Kim, Jeong Hwan;Park, Jun Seok;Ha, Yeon Chul;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.493-510
    • /
    • 2021
  • Mineral wool is an insulation material commonly used in passive fire protection (PFP) systems on offshore installations. Insulation materials have only been considered functional materials for thermal analysis in the conventional offshore PFP system design method. Hence, the structural performance of insulation has yet to be considered in the design of PFP systems. However, the structural elements of offshore PFP systems are often designed with excessive dimensions to satisfy structural requirements under external loads such as wind, fire and explosive pressure. To verify the structural contribution of insulation material, it was considered a structural material in this study. A series of material tensile tests was undertaken with two types of mineral wool at room temperature and at elevated temperatures for fire conditions. The mechanical properties were then verified with modified methods, and a database was constructed for application in a series of nonlinear structural and thermal finite-element analyses of an offshore bulkhead-type PFP system. Numerical analyses were performed with a conventional model without insulation and with a new suggested model with insulation. These analyses showed the structural contribution of the insulation in the structural behaviour of the PFP panel. The results suggest the need to consider the structural strength of the insulation material in PFP systems during the structural design step for offshore installations.

A study on prediction and improvement method of fire risk for a newly built college dormitory (신축 승선생활관의 화재 위험성 예측 및 개선방안에 관한 연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.228-234
    • /
    • 2016
  • As a college dormitory has the features of high dwelling density and a floating population that becomes crowded during particular times, when a disaster such as a fire occurs, it has the risk of causing much loss of life. In this study, the fire simulation program Fire Dynamics Simulator (FDS), is used to predict the risk when a fire occurs, to analyze the problem, and to suggest an improvement plan for a new cadet dormitory at an university in Korea. The research results are as follows. When a fire occurred in the ironing room inside the cadet dormitory, a smoke detector operated after 65 seconds. Thirteen seconds later, a sprinkler started to operate. The temperature and carbon monoxide density reached the limit value at 241 and 248 seconds, respectively. Because the limit visibility value was reached within 66 seconds after the occurrence of a fire, it is predicted that preparation must be finished and evacuation should begin within 1 minute after the fire occurs, in order to have no casualties. Synthesizing this dormitory fire risk prediction result, the visibility value is considered to be the most dangerous factor for personal safety. Because of this, installing a smoke extraction system is suggested to secure visibility. After the installation of a smoke extraction system, the problem of smoke diffusion in the corridors improved.

Fire Resistance Behavior and Residual Capacity of Voided Slab Subjected to Fire According to Loading Condition (화재 시 하중 재하 조건에 따른 중공슬래브의 내화거동 및 잔존성능)

  • Choi, Hyun-Ki;Bae, Back-Il;Jung, Hyung-Suk;Choi, Chang-Sik;Choi, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.99-106
    • /
    • 2018
  • This study presents experimental investigation on the residual capacity of fire-damaged voided slabs according to loading conditions. In this study, two voided slab specimens were fabricated, and heated by ISO standard fire during 120 minutes with different loading conditions of presence of loading. These specimens were cooled down to room temperature, and the residual capacity of fire-damaged voided slabs was investigated. Based on test results, thermal distribution of voided slab through the depth of concrete sections is different by the loading conditions. The temperature of loaded specimen is rapidly elevated through the whole depth of concrete sections compared to the unloaded specimen. The residual strength of fire-damaged voided slab specimens are 60% and 66% of that of voided slab specimen without fire damage, and the residual stiffness of fire-damaged voided slab specimens decreases by 15%~23% of that of voided slab specimen without fire damage. In case of voided slab specimens subjected ISO standard fire, the loaded specimen shows the decrease of 10% in the residual strength and the decrease of 15% in the residual stiffness compared to the unloaded specimen. It seems to result from higher temperature of bottom reinforcements in the loaded specimen due to the cracks, and more extensive damage on concrete cover of reinforcements by spalling process according to load level.

A Correlation Study for the Prediction of the Maximum Heat Release Rate in Closed-Compartments of Various Configurations (다양한 형상의 밀폐된 구획에서 최대 열발생률 예측을 위한 상관식 검토)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • In a closed-compartment with various configurations, the correlation that can predict the maximum heat release rate (HRR) with the changes in internal volume and fire growth rate was investigated numerically. The volume of the compartment was controlled by varying the length ratio based on the bottom surface shape of the ISO 9705 fire room, where the ceiling height was fixed to 2.4 m. As a main result, the effect of a change in ceiling height on the maximum HRR was examined by a comparison with a previous study that considered the change in ceiling height. In addition, a more generalized correlation equation was proposed that could predict the maximum HRR in closed-compartments regardless of the changes in ceiling height. This correlation had an average error of 7% and a maximum error of 19% for various fire growth rates when compared with the numerical results. Finally, the applicability of the proposed correlation to representative fire compartments applied to the domestic performance-based design (PBD) was examined. These results are expected to provide useful information on predicting the maximum HRR caused by flashover in closed-compartments as well as the input information required in a fire simulation.

Development of Waterproof Electric Outlet using Silicon Packing Technology (실리콘 패킹 기술을 이용한 방수 콘센트의 개발)

  • Choi, Chung-Seog;Kim, Chang-Soung
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.85-87
    • /
    • 2008
  • In this paper, we manufactured waterproof outlet that use silicon packing know-how. Developed outlet is waterproof packing on pins of the plug insertion hole and electric wire insertion hole. Therefore, outlet body internal furnace water can prevent that is flowed in. Temperature anomaly can use in back large outer wall, restaurant exposed easily to moisture, bathroom, laundry, a laboratory and science room, auditorium, etc. That is estimate that contribute on courtesy call of electricity calamity.

  • PDF

A Flamespread Model to Predict a Room Flashover (Flashover 예측을 위한 Flamespread 모델의 적용)

  • ;J.G. Quintiere
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1999.06a
    • /
    • pp.63-68
    • /
    • 1999
  • 건물화재 시 예상되는 화재위험성은 플래쉬오버 현상에 따라 큰 영향을 받게된다. 플래쉬오버 현상은 공간의 가연물이 일시적으로 연소에 관련되면서 인적, 물적 피해가 극대화되는 시점으로 볼 수 있으며 따라서 이에 대한 공학적인 해석은 적정 방화설계를 위한 필수적인 조건이 된다. 한편, 건물의 벽, 천장 등에 사용되는 가연성 마감제의 열적특성은 플래시오버현상을 예측하는 매우 중요한 기준으로 인식되고 있으며 이와 같은 배경에서 현재 미국의 ASTM, NFPA, UBC 그리고 ISO에서는 각자의 기준을 정하여 사용하고 있다. (중략)

  • PDF

A Study on Drying Characteristics of Printing Machine Using NIR (근적외선을 이용한 인쇄기계의 건조특성 연구)

  • Choi, Kyu-Chool
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.203-208
    • /
    • 2007
  • Drying characteristics are confirmed by experiment to a printing machine which use Gravure ink or metal ink for an optimum design of direct radiation drying system room using NIR. As a result, Drying is easily accomplished in short distance and low moving speed in Gravure ink, but drying is dropped in metal ink because of oil. This confirmed that the development of water metal ink had to be proceeded to accomplish a perfect drying condition.

  • PDF

Study on the Shortest Path finding of Engine Room Patrol Robots Using the A* Algorithm (A* 알고리즘을 이용한 기관실 순찰로봇의 최단 경로 탐색에 관한 연구)

  • Kim, Seon-Deok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.370-376
    • /
    • 2022
  • Smart ships related studies are being conducted in various fields owing to the development of technology, and an engine room patrol robot that can patrol the unmanned engine room is one such study. A patrol robot moves around the engine room based on the information learned through artificial intelligence and checks the machine normality and occurrence of abnormalities such as water leakage, oil leakage, and fire. Study on engine room patrol robots is mainly conducted on machine detection using artificial intelligence, however study on movement and control is insufficient. This causes a problem in that even if a patrol robot detects an object, there is no way to move to the detected object. To secure maneuverability to quickly identify the presence of abnormality in the engine room, this study experimented with whether a patrol robot can determine the shortest path by applying the A* algorithm. Data were obtained by driving a small car equipped with LiDAR in the ship engine room and creating a map by mapping the obtained data with SLAM(Simultaneous Localization And Mapping). The starting point and arrival point of the patrol robot were set on the map, and the A* algorithm was applied to determine whether the shortest path from the starting point to the arrival point was found. Simulation confirmed that the shortest route was well searched while avoiding obstacles from the starting point to the arrival point on the map. Applying this to the engine room patrol robot is believed to help improve ship safety.

Effects of Change in Heat Release Rate on Unsteady Fire Characteristics in a Semi-Closed Compartment (반밀폐된 구획에서 발열량 변화에 따른 비정상 화재특성)

  • Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.75-83
    • /
    • 2012
  • An experimental study was conducted to investigate the effects of change in heat release rate on unsteady fire characteristics of under-ventilated fire in a semi-closed compartment. A standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time using a spray nozzle located at the center of enclosure. Temperature, heat flux, species concentrations and heat release rate were continuously measured and then global equivalence ratio (GER) concept was adopted to represent the unsteady thermal and chemical characteristics inside the compartment. It was observed that there was a significant difference in unsteady behavior between global and local combustion efficiency, and the GERs predicted by ideal and measured heat release rate were also shown different results in time. The unsteady behaviors of temperature, heat flux and species concentrations were represented well using the GER concept. It was important to note that CO concentration was gradually decreased with the increase in GER after reaching its maximum value in the range of 2.0~3.0 of global equivalence ratio. In addition, the experimental data on unsteady thermal and chemical behaviors obtained in a semi-closed compartment will be usefully used to validate a realistic fire simulation.

Comprehensive Analysis of Exposed Adverse Factors in Disaster Response Activities - Focused on Fire - (재난 대응 활동 시 노출가능 유해인자 종합분석 -화재 현장을 중심으로-)

  • Park, Chanseok
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.3
    • /
    • pp.420-430
    • /
    • 2014
  • Firefighters performing disaster response activities such as Fire Suppression Rescue First Aid in fire are being exposed in various adverse factors, heat, smoke, toxic gases, emotional stress, biological toxic factors and physical overload by unnatural ergonomic posture required for firefighters. But so far, there is the study for this problem only separately. There is no study about comprehesive analysis of exposed adverse factors in fire-related disaster response activities and countermeasures. The purpose of this study is to contiribute to solving the health problems and prevention of accidents of firefighters by extracting hazardous agents in disaster such as fire and by proposing countermeasures. After analyzing circumstances such as fire-suppression, rescue first aid and life-environment, exposure factors of fire are derived and exposure status is suggested according to physical chemical biological psychological aspects. The countermeasure against the noise of the physical exposure factors are proposed. The countermeasures such as protective equipment and clean room in chemical factors, infection prevention education, vaccination and periodic check system in biological factors, PTSD alleviation booth and mentoring in psychological factors are proposed.