• Title/Summary/Keyword: Roof-supporting Strata

Search Result 3, Processing Time 0.018 seconds

An Examination on the Origin of Stone Pagodas of the Silla Kingdom (신라석탑(新羅石塔)의 시원(始源) 고찰(考察))

  • Nam, Si Jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.2
    • /
    • pp.154-169
    • /
    • 2009
  • Korea is famous for a number of stone pagodas. In particular, it is noticeable that the stone pagodas came after wooden pagodas in all the Kingdoms of Goguryeo, Baekje, and Silla. Since the advent of wooden pagodas, it was during the latter half period of Three Kingdoms(especially, in the early Seventh century) that the first stone pagoda appeared at Mireuksa Temple site in imitation of the wooden ones. Now that no one can deny that Korean stone pagodas have developed, imitating the wooden pagodas. It is also obvious that the Stone Pagoda at Mireuksa site is the prototype of Korean stone pagodas. However, this study casts doubt on the theory that the stone pagodas in the Silla Kingdom originated not from the wooden pagodas, but from the brick pagodas, whereas the stone pagodas in Baekje Kingdom which has been said to come from the wooden ones. The fact that the temples and pagodas in both Baekje and Silla were erected by the same builders and technicians is one of the evidences supporting the assertion of the study. This study, accordingly, examines on the origin of the Silla pagodas by supposing the two genealogies. The first one can be summarized in chronological order as follows: starting from wooden pagodas, Stone Pagoda at Mireuksa site, Stone Pagoda at Jungrimsa site, Stone Pagoda at Gameunsa site, and Stone Pagoda at Goseonsa site. The second one, on the other hand, runs as follows: starting from bick pagodas, Stone Pagoda at Bunhwangsa, Uiseong Tapri five-storied Stone Pagoda, Seonsan Jukjang-ri five-storied Stone Pagoda, and Seonsan Naksan-ri three-storied Stone Pagoda in order. As the above genealogies show, the origin of the stone pagodas has been an controversy, especially because of the two different points of view: the one is that the roof-supporting strata(Okgaesuk-Bachim) originated from the brick structure and the ancient tomb ceiling of Goguryeo Kingdom, and the other is that the strata is a sort of the simplified design of the wooden roof structure. This study, however, takes note of the difference in length of the strata between the brick pagodas and the stone pagodas; the former stretches out its strata longer than the latter. Consequently, the study points out that the roof-supporting strata of the stone pagodas is originally a sort of modification of the wooden roof structure.

Optimization study on roof break direction of gob-side entry retaining by roof break and filling in thick-layer soft rock layer

  • Yang, Dang-Wei;Ma, Zhan-Guo;Qi, Fu-Zhou;Gong, Peng;Liu, Dao-Ping;Zhao, Guo-Zhen;Zhang, Ray Ruichong
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.195-215
    • /
    • 2017
  • This paper proposes gob-side entry retaining by roof break and filling in thick-layer soft rock conditions based on the thick-layer soft rock roof strata migration law and the demand for non-pillar gob-side entry retaining projects. The functional expressions of main roof subsidence are derived for three break roof direction conditions: lateral deflection toward the roadway, lateral deflection toward the gob and vertically to the roof. These are derived according to the load-bearing boundary conditions of the main roadway roof stratum. It is concluded that the break roof angle is an important factor influencing the stability of gob-side entry retaining surrounding rock. This paper studies the stress distribution characteristics and plastic damage scope of gob-side entry retaining integrated coal seams, as well as the roof strata migration law and the supporting stability of caving structure filled on the break roof layer at the break roof angles of $-5^{\circ}$, $0^{\circ}$, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$ are studied. The simulation results of numerical analysis indicate that, the stress concentration and plastic damage scope to the sides of gob-side entry retaining integrated coal at the break roof angle of $5^{\circ}$ are reduced and shearing stress concentration of the caving filling body has been eliminated. The disturbance of coal mining to the roadway roof and loss of carrying capacity are mitigated. Field tests have been carried out on air-return roadway 5203 with the break roof angle of $5^{\circ}$. The monitoring indicates that the break roof filling section and compaction section are located at 0-45 m and 45-75 m behind the working face, respectively. The section from 75-100 m tends to be stable.

Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation

  • Wang, Changxiang;Shen, Baotang;Chen, Juntao;Tong, Weixin;Jiang, Zhe;Liu, Yin;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.485-495
    • /
    • 2020
  • Based on the movement characteristics of overlying strata with gangue backfilling, the compression test of gangue is designed. The deformation characterristics of gangue is obtained based on the different Talbot index. The deformation has a logarithmic growth trend, including sharp deformation stage, linear deformation stage, rheological stage, and the resistance to deformation changes in different stages. The more advantageous Talbot gradation index is obtained to control the surface subsidence. On the basis of similarity simulation test with gangue backfilling, the characteristics of roof failure and the evolution of the supporting force are analyzed. In the early stage of gangue backfilling, beam structure damage directly occurs at the roof, and the layer is separated from the overlying rock. As the working face advances, the crack arch of the basic roof is generated, and the separation layer is closed. Due to the supporting effect of filling gangue, the stress concentration in gangue backfilling stope is relatively mild. Based on the equivalent mining height model of gangue backfilling stope, the relationship between full ratio and mining height is obtained. It is necessary to ensure that the gradation of filling gangue meets the Talbot distribution of n=0.5, and the full ratio meets the protection grade requirements of surface buildings.