• Title/Summary/Keyword: Roof top

Search Result 127, Processing Time 0.033 seconds

NPV-BASED 3D ARRAY DESIGN SYSTEM OF ROOF-TOP PHOTOVOLTAICS

  • Kim Se-Jong;Cho Dong-Hyun;Park Hyung-Jin;Yoon Hee-Ro;Koo Kyo-Jin
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.300-303
    • /
    • 2013
  • On BIPV systems, especially roof-top PV systems, the power generation is easier to be reduced due to the shades of facilities nearby, or roof itself. To secure profitability of roof-top PV systems, the optimal design of solar arrays through the precise shading analysis is an important item of design considerations. In this paper, an optimization system for array design of roof-top PVs is to be developed using three-dimensional Geospatial Information System(GIS). The profitability of income and expense is considered through the shading analysis of entire roofs. By applying the system to project for validation, the adequacy and the improvement of NPV of the system were verified compared to expert's design. The system has significance by reason that PV modules are placed through rules established with expert knowledge and geometric rules were applied to reflect the constructability and maintainability.

  • PDF

Support working resistance determined on top-coal caving face based on coal-rock combined body

  • Cheng, Zhanbo;Yang, Shengli;Li, Lianghui;Zhang, Lingfei
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.255-268
    • /
    • 2019
  • Taking top-coal caving mining face (TCCMF) as research object, this paper considers the combination of top-coal and immediate roof as cushion layer to build the solution model of support resistance based on the theory of elastic foundation beam. Meanwhile, the physical and mechanical properties of coal-rock combination influencing on strata behaviors is explored. The results illustrate that the subsidence of main roof in coal wall increases and the first weighting interval decreases with the increase of top-coal and immediate roof thicknesses as well as the decrease of top-coal and immediate roof elastic modulus. Moreover, the overlying strata reflecting on support has negative and positive relationship with top-coal thickness and immediate roof thickness, respectively. However, elastic modulus has limit influence on the dead weight of top-coal and immediate roof. As a result, it has similar roles on the increase of total support resistance and overlying strata reflecting on support in the limit range of roof control distance. In view of sensitive analysis causing the change of total support resistance, it can be regards as the rank of three components as immediate roof weight > overlying strata reflecting on support > top coal weight. Finally, combined with the monitoring data of support resistance in Qingdong 828, the validity of support resistance determined based on elastic foundation beam is demonstrated, and this method can be recommended to adopt for support type selecting in TCCMF.

Numerical simulation on strata behaviours of TCCWF influenced by coal-rock combined body

  • Cheng, Zhanbo;Pan, Weidong;Li, Xinyuan;Sun, Wenbin
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.269-282
    • /
    • 2019
  • Due to top-coal and immediate roof as cushion layer connecting with support and overlying strata, it can make significant influence on strata behaviors in fully mechanical top-coal caving working face (TCCWF). Taking Qingdong 828 working face as engineering background, $FLAC^{3D}$ and $UDEC^{2D}$ were adopted to explore the influence of top-coal thickness (TCT), immediate roof thickness (IRT), top-coal elastic modulus (TCEM) and immediate roof elastic modulus (IREM) on the vertical stress and vertical subsidence of roof, caving distance, and support resistance. The results show that the maximum roof subsidence increases with the increase of TCT and IRT as well as the decrease of TCEM and IREM, which is totally opposite to vertical stress in roof-control distance. Moreover, although the increase of TCEM and IREM leading to the increase of peak value of abutment pressure, the position and distribution range have no significant change. Under the condition of initial weighting occurrence, support resistance has negative and positive relationship with physical parameters (e.g., TCT and IRT) and mechanical properties (e.g., TCEM and IREM), respectively.

Study for the restoration of Gyeongcheonsa Pagoda - top of pagoda - (경천사(敬天寺) 10층석탑(層石塔) 복원(復原)에 관한 고찰 I - 상륜부(相輪部)를 중심으로 -)

  • Yi, Eun-Hui;Kim, Sa-Dug;Shin, Eun-Jeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.35
    • /
    • pp.100-118
    • /
    • 2002
  • Originally, Gyeongcheonsa pagoda was located in Busosan, Jungyeon-ri, Gwangdeok-myeon, Gaepung-gun, Gyeonggi-do,but it has suffered from being taken out to Japan illegally in 1907 and being returned to Korea in 1918. After returned to Korea, Gyeoncheonsa Pagoda had been neglected and restored in 1960. It had been exhibited outside the Gyeingbokgung Palace after restoration, but many problems were raised. It was taken to pieces in 1995 and it is conservation and restoring today. However, the top of pagoda is necessary to be researched about its archetype because the shapes of stupa in 1902 and in 1960(the shape of pagoda after restoration) are all different from its archetype. According to picture datum in 1902, the top of pagoda was a Korean building type on a 10 layered roof stone. On the other hand, when it was restored in 1960, cement suspected as a anda was taken place between Korean building type and a 10 layered roof stone. Therefore, I am going to examine Restoration of Gyeongcheonsa pagoda in this thesis. When we examine historical records of Geongcheonsa and datum of parts, we can know that the pagoda was established in 1348(Goryeo Dynasty) but it is difficult to know the truth of its establishment and demolition of Gyeongcheonsa-temple. Three ways to restore the top of the pagoda of Gyeoncheonsa Pagoda can be c o n s i d e r e d . First, Korean building type made by metals is located on a 10 layered roof stone, which is same to picture datum in 1902. Second, the shape of and a type, which is similar to the shape when it was restored in 1960's. Also it is similar to Lamapagoda type. Third, to restore the top of pagoda of gabled roof type, which is similar to the top of pagoda of Wongaksagi P agoda. However it is necessaray to exmamine functions about circle grooves hollowed out in a 10 layered roof stone in restoration. Also we need to find out the archetype of dragon sculpture through the dragon claws left on an edge of a 10 layered roof stone.

Analysis of the Irradiated Solar Heat Effect on Indoor Thermal Environment of the ToP Floor Units of Apartment Houses in the Summer - On Condition that All Openings of the Units are Closed - (공동주택의 하절기 개구부 밀폐 시 지붕면 일사수열이 최상층 실내온열환경에 미치는 영향 분석)

  • Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.45-53
    • /
    • 2004
  • In the summer, the irradiated solar heat gain through the roof has an effect on the thermal environment of the top floor units of apartment houses. This paper investigated the differences of the indoor air temperature and thermal comfort index between the top floor unit and the middle floor unit by measuring them at the sample houses. The purpose of this paper is to provide quantitative data about the irradiated solar heat gain during the summertime through the roof of an apartment house and these data to be the source to reevaluate the appropriate roof insulation efficiency. From this study, we obtained the brief results as follows. Indoor air temperature at the top floor unit is $1.2\sim2.2^{\circ}C$ higher than that of middle floor unit. The evaluation of the indoor thermal comfort index at each sample rooms reveals notable thermal differences between the two units. Top floor units need more cooling load during the summertime compared to middle floor units. Therefore, solutions to reduce solar Heat gain at top floor units to be considered.

Assessment of Temperature Reduction and Evapotranspiration of Green Roof Planted with Zoysia japonica (한국잔디식재 옥상녹화의 온도저감 및 증발산량 평가)

  • Kim, Se-Chang;Lee, Hyun-Jeong;Park, Bong-Ju
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1443-1449
    • /
    • 2013
  • This was an experimental study to evaluate temperature reduction and evapotranspiration of extensive green roof. Three test cells with a dimension of $1.2(W){\times}1.2(D){\times}1.0(H)$ meters were built using 4-inch concrete blocks. Ten-centimeter concrete slab was installed on top of each cell. The first cell was control cell with no green roof installed. The second and third cells were covered with medium-leaf type Zoysiagrass (Zoysia japonica) above a layer of soil. Soil thickness on the second cell was 10cm and that on the third cell was 20cm. Air temperature, relative humidity and solar irradiance were measured using AWS (automatic weather system). Temperature on top surface and ceiling of the control cell and temperature on top surface, below soil and ceiling of green roof cells was measured. Evapotranspiration of the green roof cells were measured using weight changes. Compared with temperature difference on the control cell, temperature difference was greater on green roof cells. Between two green roof cells, the temperature difference was greater on the third cell with a thicker soil layer. Temperature differences below soil and on ceilings of green roof cells were found greater than those of the control cell. Between the green roof cells, there was no difference in the temperature reduction effects below soil and on ceilings based on substrate depth. In summary, green roof was found effective in temperature reduction due to evapotranspiration and shading effect.

Wind pressures on a large span canopy roof

  • Rizzo, Fabio;Sepe, Vincenzo;Ricciardelli, Francesco;Avossa, Alberto Maria
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.299-316
    • /
    • 2020
  • Based on wind tunnel tests, this paper investigates the aerodynamic behavior of a large span canopy roof with elliptical plan and hyperbolic paraboloid shape. The statistics of pressure coefficients and the peak factor distributions are calculated for the top and bottom faces of the roof, and the Gaussian or non-Gaussian characteristics of the pressure time-histories in different areas of the roof are discussed. The cross-correlation of pressures at different positions on the roof, and between the top and bottom faces is also investigated. Combination factors are also evaluated to take into account the extreme values of net loads, relevant to the structural design of canopies.

A Study on Revitalization of Rooftop Garden by Assessing the Publicness : a Case of Mullae Roof Garden, Mullae-dong, Seoul (옥상텃밭의 공공성 평가에 따른 이용 활성화 방안 연구)

  • Kwang, Nae-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.3
    • /
    • pp.131-142
    • /
    • 2016
  • Urban agriculture, which can be defined as agriculture performed in a city, is suggested as an alternative solution to restore deserted community and expand green land in city area through cultivation activities. In Korea, 'Urban Agriculture Promotion and Support Act' was enforced from May 2012. In addition, in the same year, Seoul Metropolitan Government declared 'the beginning of urban agriculture era,' established municipal ordinance, and increased budget to actively support urban agriculture. As a result, urban agriculture practices have been increasing every year. Yet, the way of developing urban agriculture in a uniform way of expanding green land has led to difficulties of securing proper spaces. Accordingly, 'roof top' spaces have gained attention. This study analyzes rooftop garden, one of the spaces of carrying out urban agriculture, from the publicness perspective. The study selected a case study of a public rooftop garden in Mullae-dong, Yeongdeungpo-gu, investigated present conditions and usage features of the garden, and explored the conditions to be a 'public' roof top garden. Through theoretical analysis, both physical and non-physical indicators were derived for analysis framework; physical aspects- accessibility, locality, openness, comfortness, and non-physical aspects- subjectivity, cooperativeness, and a sense of community. The results of this study are as follows. First, openness and locality scores were the highest, and comfortness scored the lowest, in ensuring the publicness of Mullae roof top garden. Second, non-physical indicators had stronger effect than physical indicators on rooftop garden users' awareness on publicness and building a garden community. In conclusion, in order to vitalize roof top garden, users should be engaged from the very first planning stage of building a garden, opening hours should not be limited, and more importance should be put on users to subjectively manage the operation of rooftop garden than merely creating a physical environment.

Investigation and Analysis on the Surface Morphology of Roof-Top Photovoltaic System (평지붕 설치 태양광시스템의 표면형태 조사·분석)

  • Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.57-65
    • /
    • 2016
  • Domestic photovoltaic system for roof-top is installed towards the south at an angle of 20 to 35 degrees and the shape of PV array is divided into two kinds; a plane shape and a curved shape. This paper aims to understand an actual condition of PV facility and strengths and weaknesses of support structure production and installation and to consider the best PV surface shape by analyzing theoretical logics of these two surface shapes and architectural perspective-based realistic case studies. This study targeted 98 facilities including common houses, public institutions and education institutions. In common houses, all of 59 PV facilities have a plane surface. In public institutions, 7 of 15 PV facilities have a curved array surface and 8 PV facilities have a plane surface. In education institutions, also, 14 of 24 PV facilities have a plane array surface and 10 PV facilities have a curved surface. Most of 98 facilities have a flat roof supporting shape. However, it was found that the curved shape wasn't positive for PV generation due to the change of radial density and it was at least 10 % more expensive to produce its structure. Also, domestic general large single-plate PV facilities have problems of harmony with buildings and wind load. Therefore, it is considered that for fixed-type roof-top PV, a plane PV array shape is good for optimum generation and economic efficiency and a parallel array structure on the roof surface is favorable to wind load and snow load without being a hindrance to the building facade.

Analysis of the Irradiated Solar Heat Effect on Indoor Thermal Environment of the Top Floor Units of Apartment Houses in the Summer - On Condition that All Openings of the Units are Opened - (공동주택의 하절기 자연환기 시 지붕면 일사수열이 최상층 실내온열환경에 미치는 영향 분석)

  • Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.45-55
    • /
    • 2005
  • In the summer, the irradiated solar heat gain through the roof has an effect on the thermal environment of the top floor units of apartment houses. This paper investigated the differences of the indoor air temperature, globe temperature and thermal comfort index between the top floor unit and the middle floor unit by measuring them at the sample units on the condition that all the openings of the units are opened. The purpose of this paper is to provide quantitative data about the irradiated solar heat gain during the summertime through the roof of an apartment house and these data to be the source to reevaluate the appropriate roof insulation efficiency. From this study, we obtained three brief results as follows. Indoor air temperature difference between the two sample units shifts a day. Indoor air temperature at the top floor unit is $0{\sim}1.8^{\circ}C$ higher than that of the middle floor unit from 12:00 p.m. to 12:00 a.m. and $0{\sim}2.8^{\circ}C$ lower from 12:00 a.m. to 12:00 p.m. The evaluation of the indoor thermal comfort index and the globe temperature shows similar results as the indoor air temperature measuring. Results of this experiment verified the actual existence of indoor air temperature difference between the top floor unit and the middle one and this difference comes from the heat storage of the roof.