• 제목/요약/키워드: Roof rack cross bar

검색결과 2건 처리시간 0.015초

비대칭 단면 형상을 이용한 루프랙 크로스바의 윈드노이즈 저감 (Reduction of Aeolian Noise from Roof Rack Cross Bars Using Asymmetric Section Geometry)

  • 이정한;이강덕;정승균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1406-1412
    • /
    • 2001
  • Roof racks have become a very popular feature of vehicles as the market demand for SUV's and RV's has increased drastically over the years. Aeolian tone from the cross bars however. could be a source of severe discomfort for the passengers. Both experimental and numerical steps are taken to enhance the understanding of the generation mechanism of the wind noise. A successful reduction of the noise is achieved by imposing asymmetry in the section geometry, which reduces the strength of Karmann vortices shed downstream.

  • PDF

측면 단동 릴리즈 시스템을 이용한 자동차용 루프 캐리어 개발 프로세스 (The Development Process of Vehicle Roof Carrier using One Side Release System)

  • 장동환;고병두;이인철
    • 한국정밀공학회지
    • /
    • 제27권5호
    • /
    • pp.56-62
    • /
    • 2010
  • This paper presents the development process of roof carrier assembly using a one side release system for a vehicle. An RV(Recreational Vehicle) or SUV(Sports Utility Vehicle) has a roof carrier system on an upper surface of a roof panel for loading large or long size baggage. Such a roof carrier system is comprised of a roof rack longitudinally mounted on a roof panel and cross bar perpendicularly installed in the horizontal direction. Several locking mechanisms used in most vehicle roof carrier systems are composed with both side releasable locking ones. The obvious drawback to this arrangement is that when the user desires to reposition the cross bar, first one of the locking members must be unlocked and then the user must walk around to the opposite side of the vehicle to unlock the other member. In this paper, we proposed a newly locking mechanism, which allows a user simultaneously place both locking members of the roof carrier in locked and unlocked positions. In order to estimate design compatibility, structural and modal analysis is performed. Furthermore, a prototype based on the proposed design has been made, and then durability test carried out. From the simulation and experimental results, the proposed roof carrier system is proved effective and safe.