• Title/Summary/Keyword: Roof membrane

Search Result 65, Processing Time 0.028 seconds

Nonlinear Analysis of Curved Cable-Membrane Roof Systems (굴곡형 케이블-막 지붕 시스템의 비선형 해석)

  • Park, Kang-Geun;Kwun, Ik-No;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.45-55
    • /
    • 2017
  • The objective of this study is to estimate the mechanical characteristics and nonlinear behaviors on the geometric nonlinear analysis of curved cable-membrane roof systems for long span lightweight roof structures. The weight of a cable-membrane roof dramatically can reduce, but the single layer cable-membrane roof systems are too flexible and difficult to achieve the required structural stiffness. A curved cable roof system with reverse curvature works more effectively as a load bearing system, the pretension of cables can easily increase the structural stiffness. The curved cable roof system can transmit vertical loads in up and downward direction, and work effectively as a load bearing structure to resists self-weights, snow and wind loads. The nonlinear behavior and mechanical characteristics of a cable roof system has greatly an affect by the sag and pretension. This paper is carried out analyzing and comparing the tensile forces and deflection of curved roof systems by vertical loads. The elements for analysis uses a tension only cable element and a triangular membrane element with 3 degree of freedom in each node. The authors will show that the curved cable-membrane roof system with reverse curvature is a very lightweight and small deformation roof for external loads.

Watertightness Property Evaluation of Rain-Block System (개폐식 대공간 구조물에서 지붕 맞댐부 우수차단 시스템의 수밀성 평가에 관한 연구)

  • Kim, Yun-Ho;Baek, Ki-Youl;Kim, Jong-Su;Lee, Sun-Gyu;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.13-16
    • /
    • 2010
  • This study is an Investigation on the Watertightness Properties of Rain-Block System on the Sliding-Roof Joint of Large-Span Membrane Structures. In this experimental, we test the watertightness performance of joint part of sliding door in roof of large span membrane structure(for pilot project) under environment of rain and wind. A shape of rain water blocking systems of joint part in sliding door verifies the defects and effects of water leakage prevention in precipitation with the wind conditions. For obtaining watertightness of large span membrane structures, it is necessary quality of joints and performance, and quality of membrane material of a retractable roof as well as a closed roof. Also, for obtaining quality in joints, it is essential to make a watertightness guideline for design of large-span membrane.

  • PDF

Trolley Adaptability of Membrane Retractable Roof Under Vertical Load Considering Friction of Various Materials (다양한 재료의 마찰계수를 고려한 중소규모 연성 개폐식 트롤리의 수직하중에 대한 적용성 평가)

  • Kim, Yun-Jin;Lee, Seung-Jae;Lee, Yu-Han;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.83-89
    • /
    • 2016
  • Middle size of membrane retractable roof is under 25m span which consists of various moving systems. Trolley is the system that leads the membrane to parking place, transferring the load from the membrane to structural cable. When membrane closes roof completely, thus, structural behavior of trolley, which may contain various material with different friction coefficients, should be investigated by vertical load. Nummerical simulation of trolley prototypes, in this research, was performed by incrementation of vertical load. Consequently, this paper studied proper friction characteristics and provided the effective inner materials of trolley.

Evaluation of Applicability of Sliding Carriage on the Membrane Retractable Roof under Vertical and Horizontal Load Considering the Inner Holder with Various Section Characteristics (다양한 단면성질의 Inner Holder를 고려한 연성 개폐식 Sliding Carriage의 수직 및 수평하중에 대한 적용성 평가)

  • Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.67-73
    • /
    • 2022
  • Middle size of membrane retractable roof is under 25m span which consists of various moving systems. Sliding carriage is the system that leads the membrane to parking place, transferring the load from the membrane to structural cable. When membrane moves roof, thus, structural behavior of sliding carriage, which may contain various shapes with friction coefficients, should be investigated by vertical load as well as horizontal load. Nummerical simulation of sliding carriage prototypes, in this research, were performed by incrementation of vertical load and horizontal load as well. Consequently, this paper evaluated proper shapes of inner holder of Sliding carriage and evaluated the effective contact area of inner hold.

Analysis of Light Environment to Turfgrass Growth under the Roof Membrane on Stadium (경기장 지붕의 막구조가 잔디생육에 미치는 광환경에 대한 영향분석)

  • Joo Young Kyoo;Lee Dong Ik;Song Kyoo D.;Shim Gyu-Yul
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.3
    • /
    • pp.119-128
    • /
    • 2004
  • This study was conducted to analyze the effect of roof membrane on light environment that influence on turfgrass growth under domed stadium. Roof structure on experimental plot was constructed with PTFE and PE same as Busan Asiad Main Stadium. Tested turfgrass species were combinations of cool-season grasses(Kentucky Bluegrass, perennial ryegrass, $KBG80+PR20\%,\;KBG33+PR33+Fine fescue33\%)$ and warm-season grasses(zoysiagrass, 'An-yang middle-leaf, 'Zenith', Bermudagrass) established with seeding or sodding. The experimental set-up and research work were initiated November 1999 and finished on August 2000 at near Busan Asiad Main Stadium. By the result of computer simulation of daylight radiant energies on the turf surface were lower than needs of normal sport turf growth. The shortage of radiant resulted pest infection on cool-season grass mixture compared with warm-season. But turf color and density showed the best results on Kentucky bluegrass or its mixture plot. Over all the results showed that the best quality of turfgrass growth was occurred on full sun area, and the next was under PTFE membrane. The application of artificial lighting system may increase the turfgrass growth under domed stadium(partially) covered with roof membrane.

A Study on the Evaluation of Watertightness Properties for Rain-Block System in the Sliding-Roof Joint of Large-Span Membrane Structures (개폐식 대공간 막 구조물에서 지붕 맞댐부 우수차단 시스템의 수밀성 평가에 관한 연구)

  • Oh, Sang-Keun;Baek, Ki-Youl;Lee, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.129-136
    • /
    • 2010
  • This study is an evaluation of the water-tightness properties of rain-block systems in the sliding-roof joint of large-span membrane structures. In this study, we suggested a method of evaluating the water-tightness performance of the joint part of a sliding door in the roof of a large-span membrane structure (for a pilot project), in an environment of rain and wind. The shape of the rainwater blocking systems of the joint part in a sliding door verifies the defects and the effects of water leakage prevention when there is precipitation with wind conditions. To secure the water-tightness of large span membrane structures, it is necessary to have a guideline on the evaluation of the design for rain-block system of the joint part, and the quality of the membrane material, both of a retractable roof and a closed roof.

Finite Element Analysis of Inverted Umbrella-type Hyperbolic Paraboloid Shell (역우산형 쌍곡포물선 쉘의 유한요소해석)

  • Kwon, Hung-Joo;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.87-95
    • /
    • 2011
  • This study presents the comparisons between the analysis results based on membrane theory and finite element analysis for the inverted umbrella-type hyperbolic paraboloid shell structure. The effects of the roof angle on the roof deflections, member forces of edge beams and ribs, and shell stress are also investigated with various roof angles. Results show that the membrane theory overestimates the member forces of edge beams and ribs. On the contrary, the shell stresses are underestimated in the membrane theory when compared to the results from the finite element analysis. The deflections of roof slabs by finite element analysis show drastic increasement as the roof angle decreases.

A Standard Test Methods of Resistance to Root Penetration for Waterproofing and Rootproofing Membrane Using Green Roof System (인공지반녹화용 멤브레인 방수 및 방근재료의 방근성능 평가 방법 제안 연구)

  • Lee, Jung-Hoon;Seon, Yun-Suk;Kwak, Kyu Sung;Oh, Sang-Keu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.141-148
    • /
    • 2009
  • The purpose of this paper is to propose a standard test methods of resistance to root penetration for waterproofing and rootproofing membrane using green roof system. Green roof system is considered to be an important subject in construction industry for green growth project. At the same time, we have to consider the counterplan for protection the damage of waterproofing layer and concrete substrate from the penetration of plant root. But many kinds of materials for protection from root penetration are using in construction field. But the performance of those materials is not clear, and there is not test methods for the evaluation of performance. So in this paper, based on the research results of 4 institutes during four years and foreign cases, we made a standard test methods of resistance to root penetration for waterproofing and rootproofing membrane using green roof system. This test method deals with about environmental condition of laboratory, experimental facilities, kinds of plant, specimen of test, management methods, evaluation duration and documents, etc.

  • PDF

Generalized load cycles for dynamic wind uplift evaluation of rigid membrane roofing systems

  • Baskaran, A.;Murty, B.;Tanaka, H.
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.383-411
    • /
    • 2011
  • Roof is an integral part of building envelope. It protects occupants from environmental forces such as wind, rain, snow and others. Among those environmental forces, wind is a major factor that can cause structural roof damages. Roof due to wind actions can exhibit either flexible or rigid system responses. At present, a dynamic test procedure available is CSA A123.21-04 for the wind uplift resistance evaluation of flexible membrane-roofing systems and there is no dynamic test procedure available in North America for wind uplift resistance evaluation of rigid membrane-roofing system. In order to incorporate rigid membrane-roofing systems into the CSA A123.21-04 testing procedure, this paper presents the development of a load cycle. For this process, the present study compared the wind performance of rigid systems with the flexible systems. Analysis of the pressure time histories data using probability distribution function and power spectral density verified that these two roofs types exhibit different system responses under wind forces. Rain flow counting method was applied on the wind tunnel time histories data. Calculated wind load cycles were compared with the existing load cycle of CSA A123.21-04. With the input from the roof manufacturers and roofing associations, the developed load cycles had been generalized and extended to evaluate the ultimate wind uplift resistance capacity of rigid roofs. This new knowledge is integrated into the new edition of CSA A123.21-10 so that the standard can be used to evaluate wind uplift resistance capacity of membrane roofing systems.

The Roof Canopy for Seoul World Cup Stadium (서울월드컵경기장 지붕구조물 설계와 시공)

  • ;David.M.Campbell
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.5
    • /
    • pp.29-33
    • /
    • 2001
  • This paper summarizes the design and construction of the roof canopy structure for the SEOUL 2002 World Cup Main Stadium with a design inspired by Korean traditional beauty emphasizing images of the Pangpae kite. The stadium has also been designed for maximization of its post-World Cup utility to be used on as every basis by the citizens. The stadium canopy is a unique spatial network of truss members with a tensile membrane roof suspended from 16 masts. The canopy covers 40,950 ㎡. which is clad with a pre-stressed tensile membrane of PTFE coated fiberglass fabric and the glass.

  • PDF