• Title/Summary/Keyword: Roof Runoff

Search Result 46, Processing Time 0.024 seconds

A Case Study of Extensive Green Roof System for Tropical Climate in Malaysia

  • Kok, Kah Hoong;Jung, Kwansue;Sidek, Lariyah Mohd;Abidin, Mohd Roseli Zainal;Felix, Micah Lourdes
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.329-329
    • /
    • 2016
  • Rapid urbanization has taken environmental toll on the surrounding which can be witnessed by the advent of global warming and climate change. Driven by environmental needs, Green Building Index (GBI) was established in Malaysia to drive initiative to lead the property industry towards becoming more environmental friendly. Green roofs (roof with vegetated cover) as one of the assessment criteria of GBI, are gaining attention in the Malaysian society as a versatile new environmental friendly mitigation technology. This paper evaluates the qualitative and quantitative performances of an extensive green roof at Humid Tropics Centre under local tropical climate. Simulations showed that the extensive green roof system could reduce the peak discharge up to 26% in relation to impervious brown roof. Its reduction ability decreased for storms with intense rainfall. Increment of pH was observed for the green roof runoff and the runoff water quality ranged between class I and II under Water Quality Index (WQI). High concentrations of phosphate were noticed in the runoff samples and substrates (fertilized planting soil) might be the potential contributor. Findings indicate that there was a reduction of around $1.5^{\circ}C$ for indoor temperature of the building after installation of the extensive green roof.

  • PDF

An Experimental Runoff Formula in Building Roof Area for On-site Rainwater Management (On-site 방식 빗물관리를 위한 건축물 지붕면의 유출특성 경험식 수립)

  • Kim, Young-Jin;Han, Moo-Young;Kim, Yong-Ha;Mun, Jung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.2
    • /
    • pp.171-176
    • /
    • 2009
  • This study proposes an experimental formula for cumulative runoff analysis in building roof for on-site rainwater management. We can not find an appropriate method for roof runoff analysis because of its small area scale. A new runoff equation formula for rainfall depth(D) and cumulative runoff volume(V) is developed on roof runoff conditions. Reliability of the formula is verified with field experimental runoff monitoring for two years in two buildings of rainwater management system. This experimental runoff formula can root the cumulative runoff volume from roof area and rainfall depth, then develop reasonable inflow condition for rainwater retention tank design.

The Effect of Impermeable Surface and Rainwater Infiltration Facilities on the Runoff pH of Housing Complexes (빗물 유출면 및 빗물 침투시설이 주거단지 유출빗물의 pH에 미치는 영향)

  • Hyun, Kyoung-Hak;Choi, Joung-Joo;Choung, Youn-Kyoo
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • In order to examine the effect of impermeable surface (rooftop, outdoor parking lot) and rainwater infiltration facilities on runoff pH, pH was measured. pH measurement spots were splash blocks accepted roof runoff of 3 sites, infiltration boxes and trenches accepted parking lot runoff and plastic rainwater harvesting facility accepted roof runoff. These measurements were operated at 3 housing complexes from 2006 to 2009. The rainwater runoff pH was influenced by the quality of the runoff surface material (concrete), the age of the building, waterproofing methods according to each housing site, antecedent rainfall conditions and others. Rain garden, infiltration boxes and trenches decreased the alkalinity of runoff by detention and infiltrating the roof and outdoor parking lot runoff. These results mean that decentralized rainwater management facilities of housing complexes can reduce effect on the outskirt aquatic ecosystem by the accumulation of substances causing pH rising in the infiltration facilities and rain garden.

Runoff Reduction Effect of Rainwater Retentive Green roof (저류형 옥상녹화의 우수유출저감에 대한 연구)

  • Baek, So-Young;Kim, Hyun-Woo;Kim, Mi-Kyeong;Han, Moo-Young
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.67-71
    • /
    • 2016
  • Purpose: There is a growing interest in rainwater runoff reduction effect of green roof, as flooding caused by increasing impervious surface is becoming more and more frequent in urban areas. This study was conducted to prove runoff reduction and runoff delay effect of the retentive green roof and to investigate its influencing factors to the rainfall events that occurred in the summer of 2013. Method: The experiment intended to monitor the runoff quantity of the retentive green roof($140m^2$) and normal roof($100m^2$) in #35 building in Seoul National University, Seoul, Korea for 75 days in 2013. Result: On analysis of 9 rainfall events, it showed that the retentive green roof has 24.8~100% of runoff reduction ratio, 21.2~100% of peak flow reduction ratio, 0.5~3.75 hours of peak delay, and $1.8{\sim}7.2m^3$ of retaining capacity in an area of $140m^2$. It shows different results depending on rainfall and antecedent dry days. The results show that runoff reduction effect is effective when the rainfall is less than 50 mm and antecedent dry day is longer than five days on average. By installing retentive green roofs on buildings, it can help mitigate urban floods and rehabilitate urban water cycle.

Assessments of Rainwater Runoff Quality from Soil Roofs According to Layer Thickness (흙 지붕 표층 두께에 따른 빗물의 유출 수질 평가)

  • Parkm, Jongseok;Sim, Chunseok;Moon, Byoungseok
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.300-305
    • /
    • 2011
  • This study aimed at analyzing the runoff quality by the layer thickness and material of soil roof to make best use of the rainwater falling on it in terms of safety and efficiency and resulted in the following assessments. It turned out that the concentrations decreased more in T-N, $NO_3$-N, $NH_4$-N, T-P and $PO_4$-P in roof rainwater except 30 cm for the RW1 soil roof after passing through it than those of first rainwater. On the other hand, the concentrations in rainwater passing through gravel roof turned out to be equal or same to those of the first rainwater. As a result of analysis of metallic stuff in runoff, there was no indication of Cd, Cr, Mn and Pb as well. The concentration of Cu, Fe and Zn in rainwater through soil roof became less than that of the first rainwater. In this research, the soil roof showed the good efficiency in lowering the concentration of such components as nitrogen, phosphorus and metals. Based on the results from this work, more practical study would be required further in the future in relation to soil roof when installing the rainwater-utilizing facilities.

Influence of Low Growing Vegetation in Reducing Stormwater Runoff on Green Roofs

  • Krishnan, Raymond;Ahmad, Hamidah
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.273-278
    • /
    • 2014
  • Green roof's performance in reducing stormwater runoff has been reported by numerous studies. Nonetheless, the roles of low growing vegetation in influencing stormwater runoff reduction on green roofs have been greatly overlooked. This paper describes an experiment investigating the influence of low growing vegetation in the reduction of tropical stormwater runoff on extensive green roofs. Three types of locally occurring native vegetation and one non-native Sedum species were selected (fern, herb, grass and succulent) for the experiment. Stormwater runoff reduction performance from different low growing species was done by measuring excess water runoff from the simulated green roof modules. The results show significant differences in stormwater runoff reduction from different types of vegetation. Fern was the most effective in reducing stormwater runoff, followed by herb, Sedum and grass. Vegetative characters that are found to attribute towards the performance of stormwater runoff are rooting density, structure, density, leaf type, and vegetation biomass.

A Study on Evaluation of the Ability to Reduce Stormwater Runoff of Blue-Green Roof for Flood Damage Reduction (홍수피해 저감을 위한 Blue-Green Roof의 강우유출량 저감 능력 평가에 관한 연구)

  • Seung Won Lee;Jihoon Seo;Sung Min Cha
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.30-37
    • /
    • 2023
  • This study aimed to evaluate the ability to reduce flood damage caused by abnormal rainfall events due to climate change by utilizing a blue-green roof (BGF), a type of rooftop greening technology. For two buildings with the same roof area, a BGF was installed in the experimental group, a general roof was configured in the control group, and rainfall runoff was compared. A total of 10 rainfall events were tested and analyzed by classifying them into three rainfall classes (less than 10 mm, less than 100 mm, and more than 100 mm). There was a reduction of 100% in the case of 10 mm or less of rainfall, 84. 7% in the case of 100 mm or less, and 39.8% in the case of 100 mm or more. Although this study showed that a BGF was effective in reducing rainfall runoff, additional experiments and analyses of various factors affecting rainfall runoff reduction are needed to generalize the results of the study. This research methodology may be used to develop a method for evaluating the resilience of a BGF to flood damage due to climate change.

Characteristics of EMCs for Roof Runoff (강우시 지붕유출수의 EMCs 및 특성비교)

  • Hong, Jung Sun;Geronimo, Franz Kevin F.;Mercado, Jean Margaret R.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.657-665
    • /
    • 2012
  • The development projects distort the natural water circulation system and increase the non-point source pollution by changing the natural cover type. The low impact development (LID) techniques are considering as new development approach to decrease the ecological- and hydrological impacts from high imperviousness rate. The high imperviousness rate is because of the construction of building, parking lot and road for human activities. Knowing the basic characteristics of rood runoff can give the direction for setting up the water management strategy. The monitoring results show the pollutant EMCs of roof runoff are 3~13 times lower than EMCs of the road and parking lot. The pollutant sources from roof runoff are mainly from leafs, cigarette butts, atmospheric deposition and materials of the roof. The EMC is occurred around 15minutes later after starting runoff and more than 8 storm events are needed to have the average EMCs.

A Study for the Computer Simulation on the Flood Prevention Function of the Extensive Green Roof in Connection with RCP 8.5 Scenarios (RCP 8.5 시나리오와 연동한 저관리형 옥상녹화시스템의 수해방재 성능에 대한 전산모의 연구)

  • Kim, Tae Han;Park, Sang Yeon;Park, Eun Hee;Jang, Seung Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • Recently, major cities in Korea are suffering from frequent urban flooding caused by heavy rainfall. Such urban flooding mainly occurs due to the limited design capacity of the current drainage network, which increases the vulnerability of the cities to cope with intense precipitation events brought about by climate change. In other words, it can be interpreted that runoff exceeding the design capacity of the drainage network and increased impervious surfaces in the urban cities can overburden the current drainage system and cause floods. The study presents the green roof as a sustainable solution for this issue, and suggests the pre-design using the LID controls model in SWMM to establish more specific flood prevention system. In order to conduct the computer simulation in connection with Korean climate, the study used the measured precipitation data from Cheonan Station of Korea Meteorological Administration (KMA) and the forecasted precipitation data from RCP 8.5 scenario. As a result, Extensive Green Roof System reduced the peak runoff by 53.5% with the past storm events and by 54.9% with the future storm events. The runoff efficiency was decreased to 4% and 7%. This results can be understood that Extensive Green Roof System works effectively in reducing the peak runoff instead of reducing the total stormwater runoff.

Hybrid Green Roof-Planter Box System Design and Construction for PNU GI/LID Facility

  • Ladani, Hoori Jannesari;Shin, Hyun Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.192-192
    • /
    • 2016
  • Nowadays, stormwaters have been affected by urbanization and climate change. These transition can cause many problems for hydrologic cycle by increasing runoff volume like flood and low water quality. As with other metropolises and peninsulas, Busan has involved with these problems too. Therefore, it is really vital to do some arrangements to solve them by low impact development (LID) technology. In fact, LID has been introduced to reduce runoff by applying some techniques such as green infrastructure (GI). In order to deal with the aforementioned issues in Busan, this study attempts to design and construct a hybrid green roof-planter box system at Pusan National University GI/LID Facility based on local weather. For this purpose, we used experiment and modeling method on some planter boxes and optimized them by trial and error method.

  • PDF