• 제목/요약/키워드: Rollover analysis

Search Result 61, Processing Time 0.02 seconds

A Roll-behavior Analysis of SUV in Turning Motion on a Slope (경사면에서 선회운동하는 SUV차량의 롤거동 해석)

  • Bang, Jeonghoon;Lee, Byunghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.131-137
    • /
    • 2014
  • The SUV has a risk of rollover because of the highness of center of mass. In this paper the roll-behavior of a SUV in turning motion is analyzed. Dynamic model of the vehicle on the slope is developed and simulation is carried out using the software ADAMS/Car. The results show that the relational expression between the ground force acting on the tire and the roll motion is well established. It is also identified that the driving state of the vehicle becomes unstable at the lower or upper position of the slope.

Analysis of Deformation Surrounding the Pierced Hole in the Tube Hydro-Piercing Process (하이드로 피어싱된 튜브 부위의 변형해석)

  • 최성기;김동규;문영훈
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.154-159
    • /
    • 2004
  • Deformation surrounding the hole in the tube during the hydropiercing process has been investigated in this study. The tube is expanded and internally pressurized between upper and lower dies, and a piercing punch is driven forcefully through a cross passage in the die and through the wall of the tube. The pressurized fluid within the tube provides support to the wall of the tube during a piercing step to form a hole in the tube having less deformation surrounding the hole in the tube. The deformation area may be fully retracted to a substantially flat form or partially retracted to a countersunk form. In this study, a mathematical model that can predict deformation surrounding the hole has been proposed and experimentally verified by actual hydropiercing test.

A Study on the Bending Collapse at the Open Cross-Section Members with Experiment and Analysis (열린 단면 부재의 굽힘 붕괴 실험 및 해석에 관한 연구)

  • 이승철;강신유
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.132-139
    • /
    • 2004
  • The open section members have been used as the members of vehicle such as automotives, airplanes and trains. When vehicles are crashed, these members have absorption of the energy and it is necessary for retainment of the survival space, and as the result, the prediction for the displacement of members in this case of the crash of vehicles is very important. The displacements of members in this case of the crash of automotives show combined aspect of both axial collapse and bending collapse. In the rollover accident when bending collapse happen, the collapse of each members is progressed by the plastic hinge which made from bending moment, and therefore the research for the behavior of members under bending moment after collapse is necessary to determine the internal energy which the members can absorb and the deformed shapes of the members on the step of design. In this paper, the characteristics of bending collapse at the members of the open cross-section were studied with experiment and numerical analysis. We made a comparative studied of the result of the experiment, and changed the axis according to the parallel-axis theorem.

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.

Safety Verification of Gantry Cranes using Hydraulic Cylinders (유압실린더를 사용한 갠트리 크레인의 안전성 검증)

  • Ko, Seong-Hoon;Lee, Kwang-Hee;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.8-14
    • /
    • 2019
  • A typical gantry crane is generally used to lift and transport objects in various workplaces. Most of the supporting structures in a gantry crane are fixed on the ground while the moving hoist is running overhead along the girder. There are some disadvantages to its long installation time and high installation cost. Therefore, a hydraulic based gantry crane was studied to solve the issues of typical gantry cranes. The supporting structure of the proposed gantry crane consisted of a hydraulic cylinder and telescopic boom. The dimension of the proposed gantry crane can be decreased due to its simplified structure. The analytical and theoretical methods were used to verify the structural stability of the proposed crane. The most severe load condition was considered for the analysis, and the stress and deflection of the structure are analyzed. The simulation results were as expected from the theoretical analysis. Finally, the structural and dynamic safety of the proposed hydraulic based gantry crane was validated. The obtained results can be used as guidelines in the design process of the hydraulic based gantry crane.

Analysis of the effect of punch wear on shear surfaces in the piercing process (피어싱 공정에서의 펀치 마모가 전단면에 미치는 영향 분석)

  • Jeon, Yong-Jun;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.28-33
    • /
    • 2022
  • The recent increasing application rate of advanced high-strength steel(AHSS) for automotive parts makes it difficult to ensure the durability of forming tools. Significant load and friction generated during the piercing process of AHSS increase the wear rate and the damage degree to dies. These harsh process conditions also yield product failures, such as dimensional inconsistency of pierced holes and insufficient quality of hole's sheared edge. This study analyzed the effect of punch wear on the sheared surface of pierced parts and the forming load during the piercing process. Wear-shaped punches showed approximately 20% higher piercing load than normal-shaped punches, and the rollover ratio of the sheared surface also increased. It is considered that the dull edge of wear-shaped punches does not penetrate directly into the material but shears after tensioning it in a piercing direction. In addition, wear-shaped punches experienced compressive load even after completing the piercing process during the down-stroke and tensile load during the up-stroke. This load variation is related to the smaller diameter piercing holes produced by wear-shaped punches compared to normal-shaped punches. Thus, we demonstrated the predictability of the wear level of dies through a comparative analysis of the piercing load pattern.

Leverage and Bankruptcy Risk - Evidence from Maturity Structure of Debt: An Empirical Study from Vietnam

  • NGUYEN, Thi Thanh;KIEN, Vu Duc
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.1
    • /
    • pp.133-142
    • /
    • 2022
  • This study examines the relationship between debt maturity structure and bankruptcy risk. There are various studies of leverage's effect on bankruptcy risk. Debt maturity, however, has not received the attention it deserves, especially in emerging markets with a high degree of information asymmetry. Using Vietnamese listed company data and various estimations, we find that leverage is positively associated with the likelihood of default. Importantly, short-term leverage shows a significantly positive effect on bankruptcy risk, while long-term leverage does not show significant results. The findings highlight that rollover risk firms are exposed to when using short-term debt increases bankruptcy risk. Meanwhile, firms do not cope with this risk in case of long-term debt adoption. High information asymmetry in emerging markets may be the main reason for the difference. The result is robust for subsamples of firms in different financial conditions, in concentrated and competitive industries, as well as for manufacturing and non-manufacturing companies. We also find that firms in a better financial situation and concentrated industries experience a higher short-term leverage effect than their counterparts. We, however, do not find a significant difference in the impact between manufacturing and non-manufacturing companies. This paper is among the first to examine the relation between debt maturity and bankruptcy risk in Vietnam.

Effectiveness Analysis of NCAP(New Car Assessment Program) on Traffic Safety (자동차 안전도평가제도의 정량적 효과분석)

  • Cho, Han-Seon;Shim, Jae-Ick;Sung, Nak-Moon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.2
    • /
    • pp.7-15
    • /
    • 2008
  • New Car Assessment Program(NCAP) provides consumers with vehicle safety information, primarily front and side crash rating results, and more recently rollover ratings, to aid consumers in their vehicle purchase decisions. NCAP is a system to improve driver and passenger safety by providing market incentives for vehicle manufacturers to voluntarily design their vehicles to better protect drivers and passengers in a crash and be less susceptible to rollover, rather than by regulatory directives. NCAP have been performed since 1999 in Korea by the government in order to reduce fatalities and injuries caused by traffic accidents. Although as the number of vehicles models increases, more vehicle models are required to be test and NCAP is evaluated as a valuable system for vehicle safety, the expansion of the system is slow. It looks like that the benefit of NCAP quantitatively was not verified. In this study, based on the idea that the benefit of the NCAP is defined as the decrease of traffic accident severity by improving vehicle safety, a methodology to analyze the effectiveness of NCAP quantitatively in terms of traffic safety was developed. According to the developed methodology, the reduced numbers of fatalities and injuries were 1.51 and 466 in 2005.

Design of a Two-wheeled Balancing Mobile Platform with Tilting Motion (횡방향 틸팅 기능을 갖는 이륜 밸런싱 모바일 플랫폼 설계)

  • Kim, Sangtae;Seo, Jeongmin;Kwon, SangJoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.87-93
    • /
    • 2014
  • Conventional two-wheeled balancing robots are limited in terms of turning speed because they lack the lateral motion to compensate for the centrifugal force needed to stop rollover. In order to improve lateral stability, this paper suggests a two-wheeled balancing mobile platform equipped with a tilting mechanism to generate roll motions. In terms of static force analysis, it is shown that the two-body sliding type tilting method is more suitable for small-size mobile robots than the single-body type. For the mathematical modeling, the tilting-balancing platform is assumed as a 3D inverted pendulum and the four-degrees-of-freedom equation of motion is derived. In the velocity/posture control loop, the desired tilting angle is naturally determined according to the changes of forward velocity and steering yaw rate. The efficiency of the developed tilting type balancing mobile platform is validated through experimental results.

A Study of Aircraft Ground Motion (항공기 지상운동 특성에 관한 연구)

  • Song, Won Jong
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.17-25
    • /
    • 2017
  • Vertical reaction force between ground and tire is an important parameter determining the ground behavior characteristics of aircraft. This parameter can be used to calculate the lateral force and friction. However, it is hard to obtain this parameter in real-time when the aircraft is taxiing. Therefore, pre-analysis of ground behavior and vertical reaction force should be conducted using ground simulation results to prevent rollover or hazardous scenarios. In this paper, a Landing Gear and Full-Aircraft model was constructed using VI-Aircraft S/W. The roll behavior of aircraft was analyzed using steering simulation results compared with taxi-test data.