• Title/Summary/Keyword: Rolling load

검색결과 300건 처리시간 0.025초

표면 Rolling시 가압력이 표면 조도에 미치는 영향 (An effect of load on surface roughness in surface rolling)

  • 강명순
    • 오토저널
    • /
    • 제9권5호
    • /
    • pp.57-65
    • /
    • 1987
  • The surface rolling method which is one of the plastic deformation processes increases the surface roughness with reduction of diameter and hardness. In this study, three NACHI 6000 ZZ bearing were used for surface rolling tool on a mild steel The following results have been obtained with the mild steel. 1) The load is major factor in getting fine surface roughness of roller finishing after grinding The optimal surface roughness of SS41 steel can be obtained at the contact pressure of 210 kgf/cm$^{2}$. 2) At the contact pressure range of 200kgf/cm$^{2}$-210kgf/cm$^{2}$ for optimal surface roughness, The surface hardness increased to Hv200-Hv240 from Hv 125 before surface rolling. 3) Within the diameter variation of 13 .mu.m the surface roughness and the surface hardness were increased, but out of variation of 14.mu.m. The surface roughness become worse and the surface hardness was increased.

  • PDF

반경하중을 받는 결함 볼베어링의 진동해석에 관한 연구 (A Study on the Vibration Analysis of Multi-components Damaged Ball Bearing under Radial Load)

  • 김영주;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.29-42
    • /
    • 1988
  • With the Hertzian contact theory, it is possible to determine the bearing load distributing pattern among the balls and rollers and also variations of the load-displacement relationships for rolling elements contacting raceways according to bearing clearance, load distribution, contact forces and dimensions of bearing components (i.e diameter of raceway and rolling elements), etc. In this paper the calculation theories of contact load and normal approach between two raceways under radial load are reviewed, and compared these calculation results with those of experimental results. A new calculation theory for elastic displacement of outer-race of ball bearing under radial load is developed by authors by application of energy method, which is independent on the effects of roughness, bending or eccentricity of bearing with driving shaft, and is effective in measuring the location of its defect.

  • PDF

구름마찰 접촉하중시 Polyethylene Tibia 표면균열의 응력확대계 수와 복합전파거동에 관한 연구 (Stress Intensity Factors and Possible Crack Propagation Mechanisms for a Crack Surface in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact)

  • 김병수;문병영
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2019-2027
    • /
    • 2003
  • Pitting wear is a dominant from of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, K$\_$I/and $_{4}$, were calculated for a surface crack in a polyethylene-CoCr-bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive K$\_$I/ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $_{4}$ was the greatest when the load was directly adjacent to the crack (g/a=${\pm}$1). Sliding friction caused a substantial increase of both K$\_$I/$\^$max/ and $_{4}$$\^$max/. The effective Mode I stress intensity factors, K$\_$eff/, were the greatest at g/a=${\pm}$1, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of K$\_$eff/ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

구름마찰접촉하중 시 Polyethylene tibia 요소의 표면균열 복합전파 거동에 관한 연구 (Study for Possible Crack Propagation Mechanisms for a Surface Cracked in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact)

  • 김병수;문병영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1222-1227
    • /
    • 2003
  • Pitting wear is a dominant form of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, $K_{I}$ and $K_{II}$, were calculated for a surface crack in a polyethylene - CoCr - bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive $K_{I}$ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $K_{II}$, was the greatest when the load was directly adjacent to the crack $(g/a={\pm}1)$. Sliding friction caused a substantial increase of both $K_{I}^{max}$ and $K_{II}^{max}$. The effective Mode I stress intensity factors, $K_{eff}$, were the greatest at $g/a={\pm}1$, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of $K_{eff}$ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

  • PDF

Experimental study on characteristic of sloshing impact load in elastic tank with low and partial filling under rolling coupled pitching

  • Wu, Wenfeng;Zhen, Changwen;Lu, Jinshu;Tu, Jiaoyang;Zhang, Jianwei;Yang, Yubin;Zhu, Kebi;Duan, Junxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.178-183
    • /
    • 2020
  • A series of experiments covering lowest three natural frequencies of rolling coupled pitching were conducted to investigate liquid sloshing with low liquid depth. The test results show that the most violent liquid sloshing in rolling and pitching is located in the vicinity of the first order natural frequency (f1). When the excitation frequency of rolling and pitching is located between 0.98f1 and 1.113f1, roof-bursting phenomenon of liquid appeared, and the maximum impact pressure is at 1.09f1. When the external excitation frequency is at 1.113f1, the number of sloshing shocks decreases sharply. Furthermore, the space distribution of the impact pressure on the left bulkhead and the top bulkhead was analyzed. It is concluded that with low liquid filling, the impact load is greater near the free surface and the top of tank, and the impact position of the side bulkhead increases with the increasing of the frequency near the resonant frequency.

EN12663과 prEN15227에 따른 객차의 구조적 요구사항 검토 (An overview of the structural requirements of passenger carrying rolling stock according to EN12663 and prEN15227)

  • 아마르;장대성;백진성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.816-823
    • /
    • 2007
  • As the South Korean rolling stock industry is developing designs for full compliance with the European Standards, it is fitting to take a look at these two core standards. The paper presents an overview of the load cases and structural requirements developed in Europe for the design of safe and compatible rolling stock vehicles. These load cases and structural requirements have been compiled into two standards namely EN12663 and EN15227. Standard EN12663 was developed as a reference design requirements standard. The work was mandated and sponsored by the European Committee for Standardization and Standard issuing National Institutions. EN12663 specifies a series of proof and fatigue load cases for European rolling stock regulations compliant vehicle designs. As EN12663 does not address the crashworthiness issue, a dedicated crashworthiness standard, EN15227, was therefore developed in a similar manner through industry wide consultations managed by a Trans-European working group of experienced engineers and specialists. In both standards, the vehicle and/or trains are grouped into categories reflecting the vehicle types and/or their indented operational function. EN15227, developed to complement EN12663, addresses the "passive" crashworthiness capability of the vehicles and trains. EN15227 specifies reference crash scenarios similar to those found in the Technical Specification for Interoperability (TSI) of high speed trains operating in Europe. The overview also touches on a general comparison with the corresponding British Group Standard (GM/RT2100) and also the UIC leaflet based load cases. The exercise is extended to pertinent design load cases specified by the Federal Railroad Administration (FRA) in the US.

  • PDF

반용융 압연을 이용한 박판제조공정에 관한 연구( I ) (A Study on Strip Fabrication Processes Using Mushy State Rolling(I))

  • 백남주;강충길;김영도
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.584-595
    • /
    • 1991
  • In the direct rolling processes for the mushy state alloy, a mushy state material which simultaneously contains liquid-solid phase is obtained from the exit port of stirring apparatus with a given solid fraction. This solid fraction is dependent on the temperature of within the solid-liquid range which shows to be controlled accurately by the experimental conditions for a given stirring apparatus. Rolling conditions for fabrication the fine surface strip were obtained from direct rolling experiment with mushy state alloys of Sn-75%Pb and aluminum alloy. Influence of solid fraction, rolling speed and initial roller gap on the state of strip surface and solidified structure was observed. We proposed theoretical model for prediction of rolling force, and we compared calculation result and experimental value measured with load cell.

Analysis of Billet Rolling in a Continuous Mill using Idle Vertical Stands

  • Laila S. Bayoumi;Lee, Youngseog
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.762-769
    • /
    • 2004
  • An analytical approach is presented to investigate the deformation characteristics of billets in a continuous billet mill using power driven horizontal stands and idle vertical stands. The analysis is validated by comparison to the experimental results in a previously published work. The analytical results have shown that, apart from the problems of slip and buckling of billet, there are some shortcomings involved in this method. Compared to conventional rolling with all driven stands, the roll load for idle vertical stands and the rolling torque for horizontal stands are almost doubled. The billet is severely stressed within the roll-bite of idle vertical stands and the overall rolling power has increased by one third of that for conventional rolling. Theseshortcomings impair the feasibility of industrial application of idle vertical stand rolling method.

모빌리티법을 이용한 롤링피스톤형 회전식 압축기의 축심궤적 해석 (Analysis of Eccentricity Ratio in the Rolling Piston Type Rotary Compressor Using Mobility Method)

  • 강태식;최동훈;이세정
    • Tribology and Lubricants
    • /
    • 제17권1호
    • /
    • pp.22-27
    • /
    • 2001
  • This paper presents an analysis of eccentricity ratio of rolling piston using mobility method which is a powerful tool for analyzing dynamically-loaded journal bearings with efficiency and applicability. And, we investigate influences of design parameters (discharge pressure, radial clearance, rotational velocity of shaft, and eccentricity of compressor) on bearing load and eccentricity ratio. The results show that the discharge pressure, radial clearance and rotational velocity of shaft have significant influence on eccentricity ratio, and the discharge pressure and eccentricity of compressor have influence on bearing load.

알루미늄 철도차량 차체 용접부의 강도 특성에 관한 연구 (A study on the strength characteristics of welded joints in aluminum carbody of rolling stock)

  • 서승일
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.290-292
    • /
    • 2004
  • In this paper, static and fatigue load tests for the specimens, components and carbody were carried out to investigate the strength of welded joints in aluminum rolling stock. Tensile load test results showed that the static strength of welded joint for heat-treated alloys is reduced significantly and fatigue strengths are scattered by the welding imperfections. Component and whole carbody fatigue test results showed agreements with the design fatigue strength standards for specimens of same joint detail. Test results revealed that full penetration welding and strict management of welding procedure are crucial for securing strength of welded joint in aluminum carbody.

  • PDF