• Title/Summary/Keyword: Rolling Times

Search Result 187, Processing Time 0.028 seconds

The Effects of Mowing Height, Rolling, N-fertilizing, and Season on Green Speed in Korean Golf Courses (한국의 골프 코스에서 그린 스피드에 대한 예지고, 롤링, 질소 시비량과 계절의 효과)

  • 이상재;심경구;허근영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.4
    • /
    • pp.91-99
    • /
    • 2001
  • This study was carried out to investigate the effects of mowing height, rolling, N-fertilizing, and season on green speed(i.e., ball-roll distance) for developing and implementing a program of increasing green speed in Korean golf courses. Data were subjected to multi-regression analysis using SPSSWIN(Statistical Package for the Social Science), which collected from Yong-Pyong golf course greens selected to investigate. The results was as follows. 1) The multi-regression analysis of mowing height, rolling times, and N-fertilizer application rates on spring green speed was as follows; $Y_1$(spring green speed)=4.287+0.155X$_1$(rolling times)-0.131X$_2$(the amount of N-fertilizing)-0.251X$_3$(mowing height). 2) The multi-regression analysis of mowing height, rolling times, and N-fertilizer application rates on summer green speed was as follows; $Y_2$(summer green speed)=4.833-0.423X$_3$(mowing height)+0.146X$_1$(rolling times)-0.107X$_2$(the amount of N-fertilizing). 3) The multi-regression analysis of mowing height, rolling times, and N-fertilizer application rates on fall green speed was as follows; $Y_3$(fall green speed)=4.651-0.383X$_3$(mowing height)+0.142X$_1$(rolling times)-0.103X$_2$(the amount of N-fertilizing). 4) As mowing height was lowered by 1mm, green speed increased by 0.251~0.423m. As rolling times increased by 1(one), green speed increased by0.142~0.15m. As the amount of N-fertilizing increased by 1g/$m^2$, green speed decreased by 0.103~0.131m. The season also affected green speed. In comparison with spring green speed, summer green speed decreased by 0.145m and fall green speed decreased by 0.144m.

  • PDF

Changes of Texture and Plastic Strain Ratio of Asymmetrically Rolled and Annealed Cu Sheet (I) (비대칭 압연과 열처리한 Cu 판의 집합조직과 소성변형비 변화 (I))

  • Lee, C.W.;Lee, D.N.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.354-360
    • /
    • 2019
  • The plastic strain ratio is one of the factors that affect the deep drawability of metal sheets. The plastic strain ratio of fully annealed Cu sheet is low because its texture has {001}<100>. In order to improve the deep drawability of Cu sheet, it is necessary to increase the plastic strain ratio of Cu sheet. This study investigate the increase of plastic strain ratio of a Cu sheet after the first asymmetry rolling and annealing, and the second asymmetry rolling and annealing in air and Ar gas conditions. The average plastic strain ratio (Rm) was 0.951 and |ΔR| value was 1.27 in the initial Cu sheet. After the second 30.1% asymmetric rolling and annealing of Cu sheet at 1000℃ in air condition, the average plastic strain ratio (Rm) was 1.03 times higher. However, |ΔR| was 0.12 times lower than that of the initial specimen. After the second 18.8% asymmetric rolling and annealing of Cu sheet at 630℃ in Ar gas condition, the average plastic strain ratio (Rm) was 1.68 times higher and |ΔR| was 0.82 times lower than that of the initial specimen. These results are attributed to the change of the texture of Cu sheet due to the different annealing conditions.

Analysis of Friction Coefficient Dependent on Variation of Steel Grade and Reduction Ratio in High Temperature Rolling Process (고온압연공정에서 강종 및 감면율 변화에 따른 마찰계수 변화 분석)

  • Her, J.;Lee, H.J.;Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.410-415
    • /
    • 2009
  • Experimental and numerical studies were performed to examine the effect of material temperature and reduction ratio on friction coefficient during hot flat rolling. We carried out a single pass pilot hot flat rolling test at the temperatures range of $900{\sim}1200^{\circ}C$ and measured the spread of deformed material while reduction ratio varied from 20% to 40%. Materials used in this study were a high carbon steel and two alloy steels. The dimension of specimen used in hot rolling experiment was $50mm{\times}50mm{\times}300mm$. We performed a series of finite element simulation of the hot rolling process to compute the friction coefficient change in terms of steel grade and reduction ratio. Results showed that temperature dependency of friction coefficient is not noteworthy but the effect of reduction ratio on friction coefficient is quite large. For high carbon steel, friction coefficient at reduction ratio of 30% is lower than that at that of 20%. Meanwhile friction coefficient at reduction ratio of 40% was one and half times large compared with that at that of 20%. The effect of steel grade on friction coefficient was significant when reduction ration was large, e.g., 40%.

Numerical Analysis and Experimental Study of Thread Rolling Process for Micro-sized Screws(Part II: Application to a Micro-screw with Diameter of 800㎛) (마이크로 체결부품 전조성형공정에 관한 해석 및 실험적 고찰(Part II: M0.8급 마이크로 스크류 전조공정 적용))

  • Song, J.H.;Lee, J.;Lee, H.J.;Lee, G.A.;Park, K.D.;Ra, S.W.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.179-185
    • /
    • 2012
  • In this paper, it is proposed to produce high precision screws with a diameter of $800{\mu}m$ and a thread pitch of $200{\mu}m$ ($M0.8{\times}P0.2$) by means of a cold thread rolling process. In this part II of the study, the focus is on the production and reliability testing of the prototype $M0.8{\times}P0.2$ micro-screw. Designs for two flat dies were developed with the aid of the literature and previous studies. Process parameters during the cold thread rolling process were established through FE simulations. The simulation results showed that the threads of the micro-screw are completely formed through the rolling process. Prototype $M0.8{\times}P0.2$ micro-screw were fabricated with a high precision thread rolling machine. In order to verify the simulation results, the deformed shape and dimensions obtained from the experiment were compared with those from the simulations. Hardness and failure torque of the fabricated micro-screw were also measured. The values obtained indicate that the CAE based process design used in this paper is very appropriate for the thread rolling of micro-sized screws.

Research Trends in Hybrid Cross-Laminated Timber (CLT) to Enhance the Rolling Shear Strength of CLT (CLT의 rolling shear 향상을 위한 hybrid cross laminated timber 연구 동향)

  • YANG, Seung Min;LEE, Hwa Hyung;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.336-359
    • /
    • 2021
  • In this study, hybrid CLT research and development trends were analyzed to improve the low rolling shear strength of CLT, a large wooden panel used in high-rise wooden buildings. Through this, basic data that can be used in research and development directions for localization of CLT were prepared. As a way to improve the low rolling shear strength, the use of hardwood lamina, the change of the lamina arrangement angle, and the use of structural composite materials are mainly used. Rolling shear strength and shear modulus of hardwood lamina are more than twice as high as softwood lamina. It confirmed that hardwoods can be used and unused species can be used. Rolling shear strength 1.5 times, shear modulus 8.3 times, bending stiffness 4.1 times improved according to the change of the layer arrangement angle, and the CLT strength was confirmed by reducing the layer arrangement angle. Structural wood-based materials have been improved by up to 1.35 times MOR, 1.5 times MOE, and 1.59 times rolling shear strength when used as laminas. Block shear strength between the layer materials was also secured by 7.0 N/mm2, which is the standard for block shear strength. Through the results of previous studies, it was confirmed that the strength performance was improved when a structural wood based materials having a flexural performance of MOE 7.0 GPa and MOR 40.0 MPa or more was used. This was determined based on the strength of layered materials in structural wood-based materials. The optimal method for improving rolling shear strength is judged to be the most advantageous application of structural wood based materials with strength values according to existing specifications. However, additional research is needed on the orientation of CLT lamina arrangement according to the fiber arrangement of structural wood-based materials, and the block shear strength between lamina materials.

Estimation of Contact Fatigue Initiation Lifetime of an Urban Railway Wheel (도시철도 차륜의 접촉피로 초기수명 평가)

  • Ahn, Jong-Gon;You, In-Dong;Kwon, Seok-Jin;Kim, Ho-Kyung
    • Tribology and Lubricants
    • /
    • v.28 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • Rolling contact fatigue of an urban railway wheel was analysed during its rolling. A FEM analysis was performed using a 3D modelling of rail and wheel, considering the slope of the rail and nonlinear isotropic and kinematic hardening behavior of the rail and the wheel. The maximum von-Mises stress and contact pressure between the rail and wheel were 656.9 MPa and 1111.4 MPa, respectively, under axial load of 85 kN with friction coefficient of 0. The fatigue initiation life prediction relationships by strain-lifetime (${\varepsilon}$-N) and Smith-Watson-Topper method were drawn for the wheel steel as follows: $N_i=7.35{\times}10^6{\times}SWT^{-3.56}$ and $N_i=5.41{\times}10^{-9}{\times}(\frac{{\Delta}{\varepsilon}}{2})^{-5.77}$. The fatigue lifetimes of the wheel due to rolling contact were determined to be infinite by ${\varepsilon}$-N and SWT methods.

A Study on the improvement of rolling stocks maintenance (전동차 유지보수 개선방안에 관한 연구)

  • Kim Dong-min;Ahn Jae-kyoung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1627-1633
    • /
    • 2004
  • Safety and punctuality in the subway are considered as critical factors. This system is composed of many factors like signals, rails, electrical power sources, rolling stocks. The effective inspection should be carried out at all the times for the safety and punctuality. Purpose of the rolling stocks maintenance is to offer the optimum condition of vehicles, and minimize the maintenance expenses. This paper suggests appropriate maintenance period of rolling stocks to enhance the utility efficiency in SMSC.

  • PDF

Effect of Composition and Microstructure of Si$_3$N$_4$ Ball OH Rolling fatigue Life under Boundary Lubrication (경제윤활하에서 질화규소몰의 미세구조 및 조성이 구름피로수명에 미치는 영향)

  • 최인혁;송복한;신동우
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.477-483
    • /
    • 2000
  • Rolling contact fatigue (RCF) tests were performed for two kinds of commercial silicon nitride balls using 4-Ball rolling contact fatigue life tester under EHL condition (Λ=8.9) and boundary lubrication condition (Λ=0.2). All the test balls were finished up to the dimensional accuracy of Grade 5 defined in KS B 2001 (Steel Balls for Ball Bearings) with a size of 8.731 mm. RCF tests were then conducted under the initial theoretical maximum contact stress 6.63 GPa and the spindle speed 10,000 rpm. All the test balls were not failed until 3.75 $\times$ 107 contact cycles and wear tracks of test balls were not conspicuous under EHL condition (Λ= 8.9). In the operations of low lambda regime (Λ= 0.2), all the test balls were surface damaged and high rolling wear resistance was achievable in fully densified using MgO 1 wt% and HIPed balls. Rolling wear of silicon nitride balls under boundary lubrication condition depend mainly on grain size and intergranular phase content of silicon nitride balls.

Changes of Texture and Plastic Strain Ratio of Asymmetrically Rolled and Annealed Cu Sheet (II) (비대칭 압연과 열처리한 Cu 판의 집합조직과 소성변형비 변화 (II))

  • Lee, C.W.;Jeong, J.H.;Lee, D.N.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.69-75
    • /
    • 2020
  • The plastic strain ratio is one of the factors that affect the deep drawability of metal sheets. The plastic strain ratio of fully annealed Cu sheet is low, due to its texture being {001}<100>. In this study, in order to increase the plastic strain ratio of Cu sheets we investigated the effect of two treatments: 1st the sheet was asymmetrically rolled and annealed, and 2nd the sheet was symmetrically and asymmetrically rolled and subsequently annealed. The average plastic strain ratio (Rm) of the initial Cu sheet was 0.95 and |Δr| was 1.27. After the 2nd treatment of 5.3% symmetric rolling and annealing of Cu sheet at 1000℃ for 60 min in Ar gas condition, the Rm was 2.29 times higher and the |Δr| was 1.44 times higher than that of initial Cu sheet specimen. After the 2nd treatment of 8.2% asymmetric rolling and annealing of Cu sheet at 1000℃ for 60 min in Ar gas conditions, the Rm was 2.51 times higher and |Δr| was 0.53 times lower than that of the initial Cu sheet specimen. These results can be attributed to the change in texture of the Cu sheets due to the differences in the two methods of rolling.

A study on the process for the preparation of Ag/Bi-2223 superconducting tapes by powder in tube methoe (분말충진법에 의한 Ag/Bi-2223고온초전도 선재의 제조공정에 관한 연구)

  • Kim, U-Gon;Lee, Ho-Jin;Won, Dong-Yeon;Hong, Gye-Won
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.406-415
    • /
    • 1994
  • The effects of fabrication method and condition on critical current density of Ag sheathed Bi- 2223 superconducting tapes by powder-in-tube method were studied. The highest critical current density (Jc) in the whole process was measured in the repeative heat treatment of 250 hour and mechanical deformation of 2 times. These results are suggested that the high-Tc phase at the heat treatment of 250 hour was superior and the good grain alignment at the mechanical deformation of 2 times was analyzed by XRD pattern. The highest critical current density obtained by pressing method was $1.05\times 10^4A/\textrm{cm}^2$ and $0.78\times 10^4A/\textrm{cm}^2$ in case of rolling method. The multifilamentary wires with 7 and 49 filaments were fabricated to check the applicability of pressing and rolling method for preparing multifilaments wire. The critical current density of 7 filaments tapes prepared by pressing showed $0.45 \times 10^{4}A/\textrm{cm}^2$ and $0.20 \times 10^{4}A/\textrm{cm}^2$ for 49 filaments tapes prepared by rolling.

  • PDF