• Title/Summary/Keyword: Rolling Motion

Search Result 286, Processing Time 0.026 seconds

Design of a Mechanical Joint for Zero Moment Crane By Kriging (크리깅을 이용한 제로 모멘트 크레인에 적용되는 조인트의 설계)

  • Kim, Jae-Wook;Jangn, In-Gwun;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.597-604
    • /
    • 2010
  • This study focuses on the design of a mechanical joint for a zero moment crane (ZMC), which is a specialized loading/unloading system used in a mobile harbor (MH). The mechanical joint is based on the concept of zero moment point (ZMP), and it plays an important role in stabilizing a ZMC. For effective stabilization, it is necessary to ensure that the mechanical joint is robust to a wide variety of loads; further, the joint must allow the structures connected to it to perform rotational motion with two degrees of freedom By adopting a traditional design process, we designed a new mechanical joint; in this design, a universal joint is coupled with a spherical joint, and then, deformable rolling elements are incorporated. The rolling elements facilitate load distribution and help in decreasing power loss during loading/unloading. Because of the complexity of the proposed system, Kriging-based approximate optimization method is used for enhancing the optimization efficiency. In order to validate the design of the proposed mechanical joint, a structural analysis is performed, and a small-scale prototype is built.

Analysis of Moving Vehicle Load Distribution of Curved Steel Box Girder Bridges considering Various Support Conditions (곡선교의 받침특성에 따른 주행차량하중분배 특성분석)

  • Kim, Sang Hyo;Lee, Yong Seon;Cho, Kwang Yil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.711-720
    • /
    • 2002
  • A 3-D numerical model, which could demonstrate the static and dynamic responses of a curved bridge more precisely with the moving vehicles, was developed The dynamic response induced by the centrifugal rolling motion of vehicle was identified according to the variations of the partial grade and the curvature of the slab. Dynamic characteristics of the curved bridge with the moving vehicle were analyzed under the condition of support types and two different support systems. Parametric studies were conducted to compare the efficiency of load distribution in the curved bridge. In general, while the vehicle was crossing the curved bridge, negative reaction occurred in the inside of the girder. The final result showed that the support system located outside the girder was more advantageous than other systems, and the characteristics of load distributions differed from the others in the various conditions of support systems.

A study on the tracking antenna system for DBS receive on a ship (선박용 DBS수신 추적안테나 시스템의 구현)

  • 최조천;양규식;최병하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2236-2245
    • /
    • 1997
  • The DBS system is being highlighted as actual area for the information societics. Specially, the DBS have been proposed very useful system to access the broading service in more widely sea. But the antenna tracking system for maritime DBS receiving is requried complicated control system because of the those complex motion represented pitching, rolling and yowing etc. Our resesrch target is a development of tracking system to the KOREASEA(MUGUNGWHA-1,2) for the applicated small size shipping. So our development focus was concentrated the two development direction. The first focus was represented low-cost system for popularization of small-size shipping around sea of the Korea peninsula. The second focus was an adaptive possibilities with domestic eqdupiment which was developed satellite receiving for KOREASAT. The anntenna mount is designed a compact size and easy operation use to the Az/El 2-axis type which is operated by step motor. And this mount type is very useful on a ship in the near sea of Korea peninsula. Basic tracking method is used th step-tracking algorithm, and the ship's moving compensation is adapted to the closed loop control method by ship's moving detection of gyro sensor. Control part is consists of converter, countertime, VCO, micro-computer and it's software. Testing the operation by the ship's moving simulator, and algorithm is designed tracking and moving compensation by receiving state.

  • PDF

Bearing Life Evaluation of Automotive Wheel Bearing Considering Operation Loading and Rotation Speed (작동하중과 회전속도를 고려한 자동차용 휠 베어링의 수명평가)

  • Lee, Seung Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.595-602
    • /
    • 2016
  • An automotive wheel bearing is important part that translates rotating motion and bears vehicle weight. Recently, in accordance with the demands for $CO_2$ emission reduction and fuel economy regulation, the requirements for the weight reduction and miniaturization of vehicles has increased. Therefore, life evaluation technology of the bearings has increased in necessity. Since the bearing life is affected by many parameters such as bearing geometry, bearing specifications, and vehicle specifications, it is difficult to predict. In this paper, the bearing life was tested by varying the applied load and rotation speed and comparing them with the basic rating life and modified rating life that were suggested in ISO standards. From the results, it was found that there was a difference between the test life and theoretical life and modified rating life than basic rating life was to be relatively well predicted by test life.

Effect of Design variables of Rail Surface Measuring Device on Acoustic Roughness and Spectral Analysis (레일표면 측정장치의 설계변수가 음향조도 스펙트럼 분석에 미치는 영향)

  • Jeong, Wootae;Jeon, Seungwoo;Jeong, Dahae;Choi, Han Shin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.440-447
    • /
    • 2017
  • Spectrum level for the acoustic roughness of wheels and rail surface should be periodically maintained under the limitation of ISO to reduce rolling noise of railway vehicles. Thus, in maintaining railway track, displacement sensor-based measuring devices are broadly used to measure the surface roughness and to perform spectral analysis. However, these measuring devices cause unexpected measuring errors since the displacement sensors are fixed at moving platforms and the main frame produces pitching motion during measurement. To increase the accuracy of the measured values, this paper has investigated the effects of design variables such as wheel base, additional wheels, and elastic deformation of wheels on the surface roughness and acoustic roughness spectrum.

Fishing Boat Rolling Movement of Time Series Prediction based on Deep Network Model (심층 네트워크 모델에 기반한 어선 횡동요 시계열 예측)

  • Donggyun Kim;Nam-Kyun Im
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.376-385
    • /
    • 2023
  • Fishing boat capsizing accidents account for more than half of all capsize accidents. These can occur for a variety of reasons, including inexperienced operation, bad weather, and poor maintenance. Due to the size and influence of the industry, technological complexity, and regional diversity, fishing ships are relatively under-researched compared to commercial ships. This study aimed to predict the rolling motion time series of fishing boats using an image-based deep learning model. Image-based deep learning can achieve high performance by learning various patterns in a time series. Three image-based deep learning models were used for this purpose: Xception, ResNet50, and CRNN. Xception and ResNet50 are composed of 177 and 184 layers, respectively, while CRNN is composed of 22 relatively thin layers. The experimental results showed that the Xception deep learning model recorded the lowest Symmetric mean absolute percentage error(sMAPE) of 0.04291 and Root Mean Squared Error(RMSE) of 0.0198. ResNet50 and CRNN recorded an RMSE of 0.0217 and 0.022, respectively. This confirms that the models with relatively deeper layers had higher accuracy.

Three-Dimensional Kinematic Model of the Human Knee Joint during Gait

  • Mun, Joung-Hwan;Seichi Takeuchi
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • It is well known that the geometry of the articular surface plays a major role in the kinematic and kinetic analysis to understand human knee joint function during motion. The functionality of the knee joint cannot be accurately modeled without considering the effects of sliding and lolling motions. We Present a 3-D human knee joint model considering sliding and rotting motion and major ligaments. We employ more realistic articular geometry using two cam profiles obtained from the extrusion of the sagittal Plain view of the representative Computerized Tomography image of the knee joint compared to the previously reported model. Our model shows good agreement with the already reported experimental results on Prediction of the lines of force through the human joint during gait. The contact point between femur and tibia moves toward the Posterior direction as the knee undergoes flexion, reflecting the coupling of anterior and Posterior motion with flexion/extension. The anterior/posterior displacement of the contact Point on the tibia plateau during one gait cycle is about 16 mm. for the lateral condyle and 25 mm. for the medial condyle using the employed model Also. the femur motion on the tibia undergoes lateral/medial movement about 7 mm. and 10 mm. during one gait cycle for the lateral condyle and medial condyle. respectively. The developed computational model maybe Potentially employed to identify the joint degeneration.

Response of Brachial Muscles to Neck Rotation in the Decerebrate Cat (제뇌(除腦) 고양이의 경부(頸部) 회전자극에 대한 상완근(上腕筋)의 반응)

  • Lee, Dong-Sun;Park, Byung-Rim;Kim, Sang-Soo
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.103-113
    • /
    • 1990
  • The role of cervical proprioceptors in the control of body posture was studied in bilaterally labyrinth-ectomized, decerebrate cats. The animals were suspended on hip pins with the neck extended horizontally. With this placement the EMG activities of extensor and flexor muscles of the upper extremities were observed by means of sinusoidal head rotator. The rotator can induce two kinds of neck movement: The one is 'pitch' which describes a rotatory neck motion to transverse axis of the body and mainly occurs at skull-C1 (atlantooccipital) joint and the other is 'roll', side-to-side relation of the neck to longitudinal axis, whose center is C1-C2 (atlanto-axial) joint. The following results were obtained. 1) Responses of EMG activity were closely dependent on the rotatory range of the neck. And the EMG activity was not changed during sustained neck torsion, eliciting a typical tonic neck reflex. 2) On pitching movement, the head-up rotation produced the excitation of bilateral triceps muscles, whereas the head-down rotation produced the inhibition. And the response of bilateral biceps muscles was the opposite to that of triceps. 3) On rolling movement, the side-up rotation of the head produced the excitation of ipsilateral triceps muscles and the inhibition of contralateral ones. And the response of biceps muscles was the opposite to that of triceps. 4) The minimum requirement of motion to evoke EMG activities in the upper extremities was $3.2^{\circ}{\sim}12.5^{\circ}$. These results have shown that the cervical proprioceptors produce tonic discharge on the upper brachial muscles, regulate the EMG activities of those muscles, and are very sensitive to neck rotation. And it can be stated that the cervical proprioceptors may play an important role in the control of body posture and movement.

  • PDF

Unsteady Aerodynamic Analysis of the Wing with Flaperon Flying over Nonplanar Ground Surface (비평면 지면 효과를 받는 플래퍼론이 있는 날개의 비정상 공력해석)

  • Joung, Yong-In;Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.369-374
    • /
    • 2007
  • Unsteady aerodynamic characteristics of the wing with flaperon flying over nonplanar ground surface are investigated using a boundary-element method. The time-stepping method is used to simulate the wake shape according to the motion of the wing and flaperon over the surface or in the channel. The aerodynamic coefficient according to the periodic motion of the flaperon is shown as the shape of loop. The rolling moment coefficient of the wing flying in the channel is same as that of the wing flying over the ground surface. The variation range of pitching moment is wider when the wing flies in the channel than over the ground surface. The present method can provide various aerodynamic derivatives to secure the stability of superhigh speed vehicle flying over nonplanar ground surface using the present method.

An Accident Analysis for Reducing Railway Staff Fatalities (종사자의 직무사고 현황분석에 관한 연구)

  • Kwak, Sanglog;Park, Chanwoo;Wang, Jongbae
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.122-128
    • /
    • 2013
  • As a result of investment in railway safety focusing on passenger safety, the train accident rate has been reduced by half domestically and we have reached a high level of safety compared to other countries and other transportation modes. However, accidents related to staff are still at a high ratio compared to other countries. There have been few studies on staff safety and no relevant systematic safety measures have been implemented. More than 90% of staff fatalities occurred from rolling stock in motion and electrification, which are representative railway accidents. In this study, causes of accidents, and current safety measures for staff are analyzed focusing on trains in motion. The results can be utilized for developing new safety measures.