• Title/Summary/Keyword: Rolling Amplitude

Search Result 45, Processing Time 0.025 seconds

Development of Bench Tester for Designing the Passive Anti-Rolling Tanks (수동형 감요수조 설계를 위한 벤치테스터 개발)

  • Lew, Jae-Moon;Kim, Hyochul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.452-459
    • /
    • 2015
  • It is important to use bench test results in the design process of anti-rolling tanks. Traditional bench tester is usually designed to perform only roll motions about a fixed axis and relatively small so that the viscous effects may not be neglected. Novel bench tester which could adjust the motion center to realize the coupled motion of sway and roll has been devised and manufactured therefore, large scaled bench tester could be utilized for designing the passive anti-rolling tanks. The time history of the reference signal from the rotation sensor of the bench tester have been recorded and processed to determine the phase angle to derive the Response Amplitude Operator(RAO) of the stabilized ship. The breadth of ART tank model should be large up to 2 m to diminish viscous scale effect and the vertical position of the tank can be varied with the ship's center of motion. The periods and the amplitude of roll motion can be varied from 1.5 sec to 5 sec and up to ±20°, respectively. The components of the tester was expressed in three dimensional digital mockup (DMU) and assembled together in the CAD space. The final configuration of the bench tester has been determined by confirming the smooth operation of the moving parts without interference through the animation in CAD space. New analytic logic are introduced for the determination of hydrodynamic moment and phase difference due to fluid motion in ART and verified through the test. The developed bench tester is believed to be effective and accurate for the verification of stabilization effect of ART taking into the consideration of the sway effect in the design stage.

A Study on the Effects of the Period Control Device of Anti-Rolling Tanks (감요수조의 주기조절 장치 효과에 관한 연구)

  • 유재문;김효철;이현엽
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The effect of the passive anti-rolling tanks(ART) decreases when the roll period of the vessel does not match the designed oscillating period of the fluid in the tank. In order to improve the effect of the passive ART, the damping plates are installed in the lower duct of the ART to adjust the oscillating period of the fluid. The effects of the damping plates on the oscillating period of the fluid and the changes of the stabilizing moments are examined through the series of bench tests. Acryl model tank larger than 1m breadth is made to minimize the viscous effect of the tank and the stabilizing moments of the tank are measured for various roll angles. Using the obtained tank damping coefficient, RAO(Response Amplitude Operator) value in the resonance range is computed and the stabilizing effect of a ART has been estimated.

Effect of friction and eccentricity on rebbing phenomenon (회전마멸현상에서의 마찰과 편심의 영향)

  • 최연선;김준모;정호권
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.819-825
    • /
    • 1996
  • Nonlinear dynamic characteristics of rubbing phenomenon in rotor dynamics are investigated experimentally and numerically. Rubbing phenomenon occurs when rotor contacts with stator during whirling and causes the large amplitude of vibration, high whirl frequencies, and possibly catastrophic failure. Rubbing has various types of forward whirl, backward rolling, backward slipping, and partial rub depending on the system parameters of rotating machinery and running speed. Experiments are performed for forward whirl and backward whirl. And numerical analysis are conducted to explain the changes between backward rolling and backward slipping. Experimental and numerical results show that the types of whirling motion depends on the friction coefficient between rotor and stator and the eccentricity of rotor.

  • PDF

Simulation of Vessel Motion Control by Anti-Rolling Tank (능동형 횡동요 저감 장치를 이용한 선박운동제어 시뮬레이션)

  • Kim, Kyung Sung;Lee, Byung-Hyuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.440-446
    • /
    • 2018
  • The effects of an anti-rolling tank (ART) on vessel motions were numerically investigated. The potential-based BEM vessel motion simulation program and particle-based computational fluid dynamics program were dynamically coupled and used to perform a simulation of vessel motions with ART. From the time domain simulation results, the response amplitude operators for sway and roll motions were obtained and compared with the corresponding experimental and numerical results. Because the main purpose of ART was only to reduce roll motions, it was important to show that the natural properties of a floating vessel were not changed by the effects of ART. Various ART filling ratios and several ART positions were considered. In conclusion, ART only reduced the roll motion regardless of its filling ratio and position.

A Study on the Performance of Active Anti-Rolling Tank Stabilizer System (능동형 횡동요 감쇠장치의 성능에 관한 연구)

  • Choi, Chan-Moon;Ahn, Jang-Young;Lee, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.138-143
    • /
    • 2004
  • This experimental paper deals with the performance of tanks that are turned the active A.R.T(Anti-Rolling Tank) when the fluid transfers from wing tank to the opposite tank by the power developed by the automatic control system (INTERING Stabilizer), which was installed in the fishery training ship T/S. A - RA (G/T:990 tons) of Cheju National University. In this paper, the author has tested the performance of INTERING Stabilizer for the signals obtained by the inclinometer in irregular waves and compared with the results obtained in passive mode operation at stop and at various ship speeds. The performances of the system were confirmed the results as follows through the tests: 1. The average amplitude and significant roll (${\pi}$1/3) of the passive and active mode operations in the condition of stoped engine and underway were obtained 8.30$^{\circ}$, 4.37$^{\circ}$, 8.30$^{\circ}$, 4.37$^{\circ}$, and 5.01$^{\circ}$, 4.36$^{\circ}$, 5.50$^{\circ}$, 5.10$^{\circ}$, respectively. 2. The rates of performance of active mode operations were carried out during a sea trial in the condition of stop engine and underway resulted in 47.5%, 12.7%, respectively, therefore the active mode operation estimated to be improved more than passive mode operation. 3. Active - A.R.T by INTERING Stabilizer didn't affect the amplitude of pitching.

Comparison of Track Vibration Characteristics for Domestic Railway Tracks in the Aspect of Rolling Noise (철도 전동 소음의 관점에서 해석한 국내 철도의 진동 특성 비교)

  • Ryue, Jungsoo;Jang, Seungho
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. The main contributors to rolling noise are the sleepers, rail, and wheels. In order to analyze and predict rolling noise, it is necessary to understand the vibrating behaviors of railway tracks, as well as of the wheels. In the present paper, theoretical modeling methods for railway track are reviewed in terms of rolling noise; these methods are applied for the three representative types of domestic railway tracks operated: the conventional ballasted track, KTX ballasted track and KTX concrete track. The characteristics of waves propagating along rails are investigated and compared among the types of tracks. The tracks are modeled as discretely supported Timoshenko beams and are compared in terms of the averaged squared amplitude of velocity, which is directly related to the sound radiation from the rails.

A Simulation Modeling for Rail Potential and Leakage Current Analysis in DC Traction System (직류 전기철도에서의 레일전위 및 누설전류 해석을 위한 시뮬레이션 모델링)

  • Yoon, Yim-Joong;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.196-201
    • /
    • 2008
  • In DC traction systems, a part of feedback current returning through rails becomes leakage current, illumination on a metal laid underground results from the leakage current to ground. To prevent the leakage current on rails, feedback rails almost have insulated with the ground. Insulation between rails and the ground causes that the earth method changes a isolated method in DC traction systems. the rail potential rise results in the isolated method. the rail potential rise causes an electric shock when a person touches the ground and rolling stock. To decrease the rail potential rise and leakage current, there are methods for reducing the feedback resistance and current of rails, increasing the leakage resistance, decreasing the distance between substations. But it are necessary to forecast and analyze the rail potential and amplitude of leakage current. In this paper, we modeled DC traction systems and feedback circuit to simulate the rail potential and amplitude of leakage current using PSCAD/EMTDC that is power analysis program, forecasted the rail potential and amplitude of leakage current about changing various parameters in the electric circuit. By using the simulation model, we easily will forecast the rail potential and amplitude of leakage current in case of a level of basic design and maintenance in electric railway systems, valuably use basic data in case of system selection.

  • PDF

Fatigue Analysis of Reduction Gears Unit in Rolling Stock Considering Operating Characteristics (운행특성을 고려한 철도차량 감속기의 피로해석)

  • Kim, Chul-Su;Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1085-1090
    • /
    • 2011
  • To assure the safety of rolling stock, it is important to perform the fatigue analysis of reduction gear unit in rolling stock considering a variation of velocity and traction motor capability. This paper presents fatigue analysis of the damage of reduction gear unit of railway vehicle under variable amplitude loading(VAL) based on quasi-static fatigue analysis using finite element model and linear Miner's rule. The VAL for the simulation was constructed from the tractive effort curve and train run curves of railway vehicle under commercial operation condition using MSC.ADAMS dynamic analysis. The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the middle gear based on strain-life based approach. The results showed that the frequent high starting torque due to a quick start as well as increasing numbers of stops at station would decrease the fatigue life of reduction gear unit.

Investigation of Unbalanced Mass of a Work Roll in a Cold Rolling Mill (냉간 압연기에서 작업롤의 질량 불평형에 관한 연구)

  • Kim, Young-Deuk;Kim, Chang-Wan;Park, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.429-435
    • /
    • 2012
  • An abrasion due to continuous friction between a work roll and strip causes the mass of the work roll to be unbalanced in the rolling process. We developed a mathematical model for the rolling mill considering the unbalanced mass and verified the model experimentally. The work roll was approximated as a rigid rotor with eccentricity, and the effect of the unbalanced mass on chatter vibration was investigated. The joint forces computed by quasistatic analysis were applied to the work roll in the rolling mill. Transient responses were obtained, and frequency analysis was performed by solving equations of motion using a direct integration method. Horizontal vibrations were more strongly affected by eccentricity than vertical vibrations. In the horizontal direction, a small eccentricity of 1% of the work roll radius considerably increased the amplitude of the chatter frequency.

A Study on the Measurement of Dynamic Stability Derivatives in the Rolling Motion of Aircraft (항공기의 롤운동 동안정미계수 측정에 관한 연구)

  • Cho, Hwan-Kee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.41-46
    • /
    • 2013
  • This paper deals with an experimental technique for the measurement of dynamic stability derivatives in the roll motion of aircraft. Experimental aquisition method for aircraft's dynamic stability derivatives is conducted on the oscillation condition of aircraft model in the subsonic wind tunnel. The oscillation of aircraft model was forced by the oscillation apparatus. The forced oscillation technique is the method getting data from the internal balance inserted into the aircraft model during oscillating it. Dynamic stability derivatives of rolling motion were calculated by data reduction from the measurements of rolling moment, frequency and amplitude of aircraft model due to forced oscillation under wind conditions. Results of experiment is obtained similar one with those of roll dynamic stability derivatives measured in other institutes.