• 제목/요약/키워드: Roller compacted concrete Dam

검색결과 11건 처리시간 0.02초

Development of design mix roller compacted concrete dam at Middle Vaitarana

  • Ashtankar, V.B.;Chore, H.S.
    • Advances in concrete construction
    • /
    • 제2권2호
    • /
    • pp.125-144
    • /
    • 2014
  • The development in roller compacted concrete (RCC) is replacing the conventionally vibrated concrete (CVC) for faster construction of dam during last three-four decades. Notwithstanding, there have been relatively less works reported on the utilization of RCC in dam constructions, especially the dams having considerable height. Further, the Ghatgar dam was the only dam in the tropical country like India constructed using the technology of RCC until two years back. However, with the completion of 102.4 m high Middle Vaitarana Dam (MVD), owned by Muncipal Corporation of Greater Mumbai (MCGM), India, has become the first largest roller compacted concrete dam. The paper traces step by step aspects of the mix design of RCC in respect of the afore-mentioned project besides the construction aspects; and also, demonstrates as to how 12.15 lacs cubic meter of roller compacted concrete was placed within the record duration of 15.2 months, thus, rendering the MVD as the ninth fastest RCC dam in the world. The paper also discusses the various mix proportioning, quality control, constructional features and instrumentation with respect to the high RCC dam such as Middle Vaitarana.

롤러다짐 댐 콘크리트의 효율적인 배합비 도출에 관한 연구 (Mix Proportions of Concrete for Roller Compacted Concrete Dam Application)

  • 원종필;윤종환;김완영
    • 한국농공학회논문집
    • /
    • 제46권1호
    • /
    • pp.53-60
    • /
    • 2004
  • Roller-compacted concrete(RCC) dam have gained acceptance worldwide in a relatively short time due to their low cost, which is derived in part from their rapid method of construction. And RCC has recently emerged as an economically attractive material for dam construction, replacing the use of conventional concrete and even challenging the economics of earthfill and rockfill embankment dams. There are existing two major mix design methods. one used in USA and the other used in Japan. In this study, proper mix proportions of concrete for RCC dam is obtained using method of compound their merit.

Mechanical and Durability Performance of Roller-Compacted Concrete with Fly Ash for Dam Applications

  • Park, Chan-Gi;Yoon, Jong-Whan;Kim, Wan-Young;Won, Jong-Pil
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.57-61
    • /
    • 2007
  • This study investigated the mechanical and durability performance of roller-compacted concrete (RCC) with fly ash for dam applications. A test program studied the effects on the properties of fresh and hardened RCC with fly ash replacement ratio, as well as the long-term durability of the resulting mixture. Fly ash replaced 20, 30, 40, and 50% by mass of the cement. Laboratory tests of the compressive strength, splitting tensile strength, shear strength, chloride ion permeability, abrasion, and drying shrinkage were conducted. The test results demonstrated that 30% fly ash replacement is an optimum level, and that this mixture has excellent mechanical and durability properties.

RCC 댐 콘크리트의 배합비 도출에 관한 연구 (Mix proportions of Concrete for Roller Compacted Concrete Dam Application)

  • 원종필;윤종환;황금식;장필성;김완영;정우성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.997-1002
    • /
    • 2003
  • Roller-compacted concrete(RCC) dam is a new type that combines advantages of earthfill dam and concrete dam in construction, This method save cost due to their rapid method of construction. RCC is, used in RCC dams, no-slump concrete so it is different that measure method of consistency and mixture properties compare with conventional mass concrete, There are existing two major design method, which one used in USA the other used in Japan. The results obtained in this study would be useful in establishing mixture proportions for dam concrete for RCC dams by apply method of compound their merit.

  • PDF

Earthquake response of roller compacted concrete dams including galleries

  • Karabulut, Muhammet;Kartal, Murat Emre
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.141-153
    • /
    • 2019
  • The effect of galleries on the earthquake behavior of dams should be investigated to obtain more realistic results. Therefore, a roller compacted concrete (RCC) dam with and without galleries are examined under ground motion effects. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The optimal mesh around galleries is investigated to obtain the most realistic results. Two-dimensional finite element models of Cine RCC dam with and without galleries are prepared by using ANSYS software. Empty and full reservoir conditions were taken into account in the time-history analyses. Hydrodynamic effect of the reservoir water was taken into account considering two-dimensional fluid finite elements based on the Lagrangian approach. It is examined that how principle stresses and displacements change by height and during earthquake. The dam-foundation-reservoir interaction was taken into consideration with contact-target element pairs. The displacements and principle stress components obtained from the linear analyses are compared each other for various cases of reservoir water and galleries. According to numerical analyses, the effect of galleries is clear on the response of RCC dam. Besides, hydrodynamic water effect obviously increases the principle stress components and horizontal displacements of the dam.

시공단계 및 계절별 온도영향을 고려한 롤러다짐콘크리트댐의 온도응력 해석 (Thermal Stresses of Roller Compacted Concrete Dam Considering Construction Sequence and Seasonal Temperature)

  • 차수원;장봉석
    • 대한토목학회논문집
    • /
    • 제28권6A호
    • /
    • pp.881-891
    • /
    • 2008
  • 국내 최초로 시공되는 롤러다짐 콘크리트 댐(RCD)의 온도균열 관리방안 수립하기 위하여 RCD 공법의 시공특성인 층(layer) 타설 방식을 고려하여, 댐체의 온도분포 및 온도응력 해석을 수행하였다. RCD 공법은 수 백 개의 시공단계로 구성되어 있고, 실제 타설 층을 시공단계로 해석하는 것과 6층을 한 시공단계로 시공하는 경우를 비교하여 해석 단계의 단순화 가능성을 검토하였으며, 단위시멘트량이 $130kg/m^3$ 내외로 발열량이 매우 작은 RCD 배합의 경우에도 여름철에는 온도균열 지수가 1.0 이하로 나타나 온도관리의 필요성을 확인하였다.

Modeling of combined thermal and mechanical action in roller compacted concrete dam by three-dimensional finite element method

  • Abdulrazeg, A.A.;Noorzaei, J.;Mohammed, T.A.;Jaafar, M.S.
    • Structural Engineering and Mechanics
    • /
    • 제47권1호
    • /
    • pp.1-25
    • /
    • 2013
  • A combined thermal and mechanical action in roller compacted concrete (RCC) dam analysis is carried out using a three-dimensional finite element method. In this work a numerical procedure for the simulation of construction process and service life of RCC dams is presented. It takes into account the more relevant features of the behavior of concrete such as hydration, ageing and creep. A viscoelastic model, including ageing effects and thermal dependent properties is adopted for the concrete. The different isothermal temperature influence on creep and elastic modulus is taken into account by the maturity concept, and the influence of the change of temperature on creep is considered by introducing a transient thermal creep term. Crack index is used to assess the risk of occurrence of crack either at short or long term. This study demonstrates that, the increase of the elastic modulus has been accelerated due to the high temperature of hydration at the initial stage, and consequently stresses are increased.

Thermo-structural monitoring of RCC dam in India through instrumentation

  • Ashtankar, V.B.;Chore, H.S.
    • Structural Monitoring and Maintenance
    • /
    • 제2권2호
    • /
    • pp.95-113
    • /
    • 2015
  • The knowledge of the behavior of any roller compacted concrete (RCC) dam and its foundation is gained by studying the service action of the dam and its foundation using measurements of an external and internal nature. The information by which a continuing assurance of structural safety of the RCC dam can be gauged is of primary importance. Similarly, the fact that the information on structural and thermal behavior and the properties of concrete that may be used to give added criteria for use in the design of future RCC dams is of secondary importance. Wide spread attention is now being given to the installation of more expensive instrumentation for studying the behavior of concrete dams and reservoirs and forecasting of any adverse trends. In view of this, the paper traces installation and need of the comprehensive instrumentation scheme implemented to monitor the structural and thermal behavior of 102.4 m high RCC dam constructed near Mumbai in India. An attempt is made in the present paper to emphasize the need to undertake an instrumentation program and evaluate their performance during construction and post construction stage of RCC structures. Few typical results, regarding the thermal and structural behavior of the dam, obtained through instrumentation installed at the dam site are presented and compared with the design considerations. The fair agreement is seen in the response observed through instrumentation with that governing the design criteria.

Earthquake performance evaluation of three-dimensional roller compacted concrete dams

  • Kartal, Murat Emre;Karabulut, Muhammet
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.167-178
    • /
    • 2018
  • A roller compacted concrete (RCC) dam should be analyzed under seismic ground motions for different conditions such as empty reservoir and full reservoir conditions. This study presents three-dimensional earthquake response and performance of a RCC dam considering materially non-linearity. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The three-dimensional finite element model of Cine RCC dam is obtained using ANSYS software. The Drucker-Prager material model is considered in the materially nonlinear time history analyses for concrete and foundation rock. Furthermore, hydrodynamic effect was investigated in linear and non-linear dynamic analyses. Researchers observe that how the tensile and compressive stresses change by hydrodynamic pressure effect. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. In this study, dam body and foundation are modeled with welded contact. The displacements and principle stress components obtained from the linear and non-linear analyses with and without reservoir water are compared each other. Principle stresses during earthquake were obtained at the most critical point in the upstream face of dam body. Besides, the change of displacements and stresses by crest length were investigated. Moreover demand-capacity ratio criteria were also studied under linear dynamic and nonlinear analysis. Earthquake performance analyses were carried out for different cases and evaluated. According to linear and nonlinear analysis, hydrodynamic water effect is obvious in full reservoir situation. On the other hand, higher tensile stresses were observed in linear analyses and then non-linear analyses were performed and compared with each other.

Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions

  • Karabulut, Muhammet;Kartal, Murat E.
    • Computers and Concrete
    • /
    • 제25권3호
    • /
    • pp.255-266
    • /
    • 2020
  • This study presents comparation of fixed and viscos boundary condition effects on three-dimensional earthquake response and performance of a RCC dam considering linear and non-linear response. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The Drucker-Prager material model is considered for concrete and foundation rock in the nonlinear time-history analyses. Besides, hydrodynamic effect was considered in linear and non-linear dynamic analyses for both conditions. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. The contact-target element pairs were used to model the dam-foundation-reservoir interaction system. The interface between dam and foundation is modeled with welded contact for both fixed and viscos boundary conditions. The displacements and principle stress components obtained from the linear and non-linear analyses are compared each other for empty and full reservoir cases. Seismic performance analyses considering demand-capacity ratio criteria were also performed for each case. According to numerical analyses, the total displacements and besides seismic performance of the dam increase by the effect of the viscous boundary conditions. Besides, hydrodynamic pressure obviously decreases the performance of the dam.