• Title/Summary/Keyword: Roller Type

Search Result 206, Processing Time 0.025 seconds

A study of the surface color and the making technique of the Gilt-bronze roller knobs excavated from the Seonwonsa temple site (선원사지 출토 금동축수의 표면색과 제작기법에 관한 연구)

  • Baek, Seung-Hee;Han, Min-Su;Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.16 s.16
    • /
    • pp.52-63
    • /
    • 2004
  • This study tries to investigate the differences in combination of gold and other metals used in the surface guilt of the gold-guilt relics found in the Seonwonsa Temple of the Korea Dynasty. Our findings are as follows. The gilded roller knobs found in the Seonwonsa Temple of the Korea Dynasty can be classified into three groups by the color of the surface guilt: gold, white-gold, red-gold. By the color it is found that gold type contains $Au\;81.0\%,\;Ag\;3.5\%,\;Cu\;5.6\%$, white-gold type contains $Au\;82.1\%,\;Ag\;10.6\%,\;Cu\;2.4\%$, and the red-gold type contains $Au\;59.9\%,\;Ag\;3.7\%,\;Cu\;33.2\%$. The gold metal used for guilt is found to be amalgam of Hg and the depth of the guilt was uneven with the average of $2.5\~25{\mu}m$. These gilded roller knobs were produced in two methods. One of them was made out of pure bronze, and the other out of bronze veneer and led. Since we found led on the outer surface, we conclude that the led juncture was later guilt with gold.

  • PDF

Analysis of Relationship Between Compressive Strength and Compaction Ratio of Roller-Compacted Concrete Pavement (포장용 롤러전압콘크리트의 다짐도와 압축강도의 상관관계 분석)

  • Chung, Gun Woo;Song, Si Hoon;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1117-1123
    • /
    • 2016
  • Roller-Compacted Concrete Pavement (RCCP) is a type of pavement that shares conventional concrete pavement material characteristics and asphalt pavement construction characteristics. Even though RCCP is compacted in the same way and have similar aggregate gradation to asphalt pavements, its materials and structural performance properties are similar to those of conventional concrete pavement. With cement hydration and aggregate interlock, Roller-Compacted Concrete or RCC can provide strength properties equal to those of conventional concrete with low cement content. Therefore, compaction ratio of RCC can highly influence on its strength. In general, 95% of compaction ratio is required for proper strength development. RCC strength can be highly influenced by compaction energy which depends on compaction equipment and compaction method. Therefore, it is necessary to analyze the relationship between compressive strength and compaction ratio of RCC. RCCP specimens were produced at different compaction ratio by using different compaction methods and energies. The compaction ratio was defined by the ratio of the specimen's dry density and its maximum dry density. The maximum dry density was obtained from Modified Proctor test. 28 days compressive strength corresponding to each compaction ratio case was tested. Finally, the relationship between compressive strength and compaction ratio can be analyzed. For application of roller-compacted concrete in domestic construction site, the relationship is important for field compaction management.

Load analysis of Wedge type Rail Clamp (쐐기형 Rail Clamp의 하중분석)

  • Han, Geun-Jo;Ahn, Chan-Woo;Kim, Tae-Hyong;Shim, Jae-Joon;Han, Dong-Seop;Lee, Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, we design a wedge type rail clamp which can protect container crane from wind with constant clamping force regardless of the operating period. When we design wedge type rail clamp. it is important to determine the angle of wedge and analyze a contact condition of roller and wedge so that we might develop a rail clamp with variable capacity. Therefore, this paper suggest a process to decide wedge angles within feasible range which could be obtained using load analysis and FEA of wedge type rail clamp.

  • PDF

Radial Type Locomotive Mechanism with Worm for Robotic Endoscope (내시경 로봇을 위한 웜구동 방사형 이동메커니즘)

  • Kim, Kyoung-Dae;Lee, Seunghak;Kim, Byungkyu;Park, Jong-Oh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.220-225
    • /
    • 2002
  • In this paper, we suggest a new locomotive mechanism fur self-propelling robotic endoscope which could substitute conventional endoscope. Many researchers proposed inchworm-like mechanism for self-propelling robotic endoscope. But it could not be commercialized because they did not solve the limitation caused by clamping. Therefore, we suggest a new radial-type locomotive mechanism with worm. It can propel itself in any situation and take passive-steering because of radial type. In addition, it can be miniaturized with worm. In this paper, we evaluate the mechanism in the dead pig colon as well as under various environments, and verify the performance fur robotic endoscope.

Study on the Wedge Angle of Wedge Type Rail Clamp for Container Crane (컨테이너 크레인용 쐐기형 레일 클램프의 쐐기각에 대한연구)

  • Han, Geun-Jo;Lee, Ho;Sim, Jae-Jun;Han, Dong-Sub;An, Chan-Woo;Jeon, Young-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.119-126
    • /
    • 2004
  • In this paper, we design a wedge type rail clamp which can protect container crane from a sudden strong blast with constant clamping force regardless of the operating period. When we design wedge type rail clamp, it is important to determine the angle of wedge and analyze a contact condition of roller and wedge so that we might develop a wedge type rail clamp for parking devices of port cargo working system with variable capacity. Therefore, this paper suggests a process to decide wedge angles within feasible range which could be obtained using load analysis and FEA of wedge type rail clamp

Development of a Precision Seeder for Direct Seeding of Rice on Dry Paddy (정밀 파종 벼 건답직파기 개발)

  • Yoo, S.N.;Kim, D.H.;Choi, Y.S.;Suh, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.83-93
    • /
    • 2008
  • In order to save labor and cost, direct seeding has been considered as an important alternative to the machine transplanting in rice cultivation. Current direct seeding machines for rice in Korea drill irregularly under various operating conditions. This study was conducted to develope a precision seeder which enables the accurate, even-spaced in row placement of rice seeds at uniform depths of 3-4 cm on dry paddy. Design, construction and performance evaluation of the precision seeder were carried out. The tractor rear-mounted type 8-rows precision seeder which performs seeding in addition to fertilizing, ditching, and rotary tilling works on dry paddy was developed. Main components of the seeder were ditcher and leveller, rotary tiller, powered roller type furrow opener, seeding device, powered roller type furrow covering and firming device, hydraulic unit, seeding speed control system, power transmission system, hitch and frame. Ditching, furrow opening, and seed covering and firming performances were good and seeding depths of 2-4 cm could be maintained. Planting accuracies and planting precisions were within 13.6%, and 31.2%, respectively, for planting space of 15 cm, and seeding velocity of 0.5 m/s. These mean variations of average planting space were within 2.1 cm, and 90% of seeds in a hill were seeded within 4.7 cm of hill length, respectively. Error ratios between setting planting space and measured average planting space were shown within 6.7%. Therefore the seeder showed good planting performance up to seeding velocity of 0.5 m/s in field tests. And field capacity of the seeder was about 0.28 ha/hour.

A Study on Shape Design Method by Instant Velocity Centers of Rotating Outer-Ring Type Epicycloid Plate Gear (순간속도중심을 이용한 외륜회전형 에피사이클로이드 판기어의 형상설계법에 관한 연구)

  • 장세원;신중호;권순만;윤호업
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1398-1401
    • /
    • 2004
  • This paper proposes a new approach for the shape design of the rotating outer-ring type epicycloid plate gear by using instant velocity center. First, this method defines the instant velocity centers for rotating outer-ring type epicycloid plate gear and calculates the contact angles and the contact points by using the geometric relationships and the kinematic properties of the reducer. Second, it generates the full shape of the cycloidal plate gear. Finally, the paper develops CAD-program for construction of the design automation using the proposed method. This CAD-program is developed to have the functions of the friendly user interface and the simulation of the real operation for the cycloid reducer.

  • PDF

Seismic Risk Analysis of Reinforced Concrete Bridge Piers using Local Damage (국부손상을 이용한 RC교각의 지진위험도 분석)

  • Lee, Dae-Hyoung;Kim, Hyun-Jun;Park, Chang-Ky;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.194-197
    • /
    • 2006
  • This study represents results of fragility curve development for 4-span continuous bridge. 2 type bridge model is chosen frame type and 2-roller 1-hinge type. To research the response of bridge under earthquake excitation, Monte Carlo simulation is performed to study nonlinear dynamic analysis. For nonlinear time history analysis a set of 150 synthetic time histories were generated. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. Five damage states were defined to express the condition of damage based on the actual experimental damage data of bridge column. As a result of this research, the value of damage probability corresponding to each damage state were determined and frame type bridge are favorable under seismic event.

  • PDF

STUDIES ON VIBRATION CHARACTERISTICS OF THE RUBBER CRAWLER --- Dynamic characteristics of the fixed track rollers and movable track rollers ---

  • Kashima, Jun;Inoue, Eiji;Inaba, Shigeki;Sakai, Jun;Kim, Young-Keun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1186-1195
    • /
    • 1993
  • The Japanese type combine harvester has adopted rubber crawlers for the driving mechanism from first production . However, combine harvesters with movable track rollers in the rubber crawler system have been adopted recently for the purpose of stability at the time of climbing over the footpaths between rice fields, as the results of the machines becoming large. However, the dynamic characteristics of movable track rollers have not been clarified. For this reason, the design of movable track rollers depends on trial and errors. It is known that vibration characteristics of the vehicle with movable track rollers are different from the vibration characteristics of the vehicles with fixed track rollers even though the track roller arrangements are the same. Therefore, the theoretical analyses of movable track rollers must be hurried in order to formulate a reasonable track roller arrangement design. the authors have studied the vibration characteristics of the rubber crawler ve icle with fixed track rollers. in this study, the dynamic model of the vehicle with movable track roller sis compared with the dynamic model of the vehicle with fixed track rollers. Next, motions are simulated to analyze the movable track rollers by expanding the motion equation which were constructed for the dynamic model of the fixed track rollers.

  • PDF

Development of a Precision Seed Metering Device for Direct Seeding of Rice (벼 직파용 정밀 배종장치 개발)

  • Yoo S. N.;Choi Y. S.;Suh S. R.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.5 s.112
    • /
    • pp.261-267
    • /
    • 2005
  • In order to save labor and cost, direct seeding has been considered as an important alternative to the machine transplanting in rice cultivation. As current seeders for direct seeding of rice seeds drill irregular amount of seeds under various operating conditions, conventional drilling should be turned to precision planting which enables accurate placement of proper amount of rice seeds at equal intervals within rows. In this study, design, construction and performance evaluation of a precision seed metering device for planting of rice seeds were carried out. As prototype, the conventional roller type seed metering device was modified for planting: increasing diameter of metering roller, setting 2 or 4 seed cells on metering roller, adding seed discharging lid and its driving cam mechanism. Through performance tests for prototype and the current seed metering device, number of seeds in a hill, planting space and its error ratio, coefficient of variation of planting space (planting accuracy), and seeding length of $90\%$ of seeds in a hill divided by planting space (planting precision) at setting planting spaces of 15, and 20cm, seeding heights of 10, and 20cm, and seeding speeds of 0.1, 0.2, and 0.5m/s were investigated. Prototype showed better seed planting performance than the current seed metering devices. When setting planting space of 15 cm and seeding height of 10cm, prototype with 2 seed cells showed that variations of planting space and seeding lengths of $90\%$ of seeds in a hill at up to seeding speed of 0.5m/s were within 0.9cm, and 3.6cm, respectively.