• Title/Summary/Keyword: Rolled strip

Search Result 83, Processing Time 0.017 seconds

Design of Rolling Pass Schedule in Copper Thin Foil Cold Rolling According to Roll Crown of 6 High Mill (6단 압연롤 크라운을 고려한 동극박 냉간 압연 패스스케줄 설계)

  • Lee, Sang-Ho;Ok, Soon-Young;Hwang, In-Youb;Hwang, Won-Jea;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.66-72
    • /
    • 2008
  • During the plate and foil cold rolling process, considerable values of the force of material pressure on the tool occur. These pressures cause the elastic deformation of the roll, thus changing the shape of the deformation legion. Rolled copper foils should be characterized by a good quality and light dimensional tolerances. Because of automation that is commonly implemented in flat product rolling mills, these products should meet the requirements of tightened tolerances, particularly strip thickness, and feature the greatest possible flatness. The shape of the roll gap is influenced by the elastic deformation of rolls parts of the rolling process affecter of the pressure force. However, to control roll deformation should be difficult. Because the foil thickness is very thin and the permissible deviations in the thickness of foil are small. In this paper, FE-simulation of roll deformation in thin foil cold roiling process is presented.

Finite Element Analysis of Thermal Stresses on a Hearth Roll Surface Depending on Changes in the Neck Shape (허스롤 목 부위 형상 변화에 따른 열응력 분포 변화 유한요소해석)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.169-175
    • /
    • 2016
  • The hearth roll, which transfers the cold-rolled strip sheet in a Continuous Annealing Line (CAL), is always subjected to changes in the surface temperature and subsequently experiences thermal stress in service. These variations lead to the generation of thermal cracks on the hearth roll surface as well local plastic deformation. We performed finite element analysis to predict the thermal stress changes on the hearth roll surface and designed the collar shape of the hearth roll to minimize these thermal stresses. Results show that the hearth roll with a collar having an obtuse angle is much more effective than a hearth roll with collar having a right angle when the tangential stress, which is one of main causes leading to surface cracks, is compared for the various conditions. It was found that the tangential stress and the temperature on the surface of hearth roll can be reduced by 51.9% and 26℃ if the shape of roll on collar is re-designed.

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF