• Title/Summary/Keyword: Roll-up phenomenon

Search Result 14, Processing Time 0.023 seconds

Simultaneous Adsorption Characteristics of Binary-Component Volatile Organic Compounds (2성분계 휘발성유기화합물의 동시 흡착특성)

  • Park, Byung-Bae;Kim, Han-Su;Park, Yeong-Seong
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.133-140
    • /
    • 2001
  • The adsorption characteristics of binary-component Volatile Organic Compounds(VOCs) with benzene and toluene were studied in a fixed bed backed with activated carbon. The adsorption intensites of benzene and toluene resulted from equilibrium adsorption capacity led to roll up phenomenon in a fixed bed and behaved benzene as non-key component which meant the smaller affinity to the activated carbon of the two. From comparion with breakthrough curves between binary-component and single component systems at the same concentration conditions, the stoichiomertic breakthrough time of toluene in both systems had no difference, but that of benzene as non-key component had a tendency to shorten 130min than 200min of single component. In the breakthrough characteristics of binary-component adsorbates, the magnitude of roll-up of the non-key component increased with the increasing of non-key component ratio and aspect ratio(L/D) of fixed bed, while decreased with the increasing of interstitial velocity. Especially, the roll-up phenomenon was more conspicuous with the increasing of mole fraction of key component.

  • PDF

Behavior of the Coherent Structure on the Attached Forced Flame (가진된 부착화염에서 거대와동의 거동)

  • Kim, Dae-Won;Lee, Kee-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.259-266
    • /
    • 2009
  • An experimental study was conducted to investigate the effects of forcing amplitude on the flow structure near the nozzle exit of forced jet diffusion flames. The jet was excited up to the blowout occurrence by a considerable large amplitude with a periodic velocity fluctuation at the tube resonating frequency. In the attached flame regime, we disclosed the very interesting result newly that adding of a moderate forcing amplitude caused the jet flame to become longer in spite of being forced. Particular attention is focused on the turnabout mechanism of vortex roll-up around the elongated flame, which has not been reported previously, and on the inner coherent structure of the forced jet in the attached flame regime. From the velocity and flow visualization results, it was ascertained that the surrounding air due to the occurrence of negative velocity parts was suck into the fuel nozzle. To aid in understanding the rotating phenomenon of coherent structure, we present a schematic diagram of the turnabout mechanism of vortex roll-up. The mechanism of vortex turnabout phenomenon can be easily understood by considering the positive and negative velocity amplitudes about the instantaneous velocity of the forcing flow, as shown in this diagram.

A Study on the Maneuverability of a Rolling Ship under Wind Forces (풍력(風力) 및 횡요(橫搖)의 영향(影響)을 고려(考慮)한 선박(船舶)의 조종성능(操縱性能)에 관한 연구(硏究))

  • Jin-Ahn,Kim;Seung-Keon,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.3-12
    • /
    • 1984
  • Up to now, it has been common to treat the maneuvering motion of a ship as a 3-degree-freedom motion i.e. surge, sway and yaw on the sea surface, for the simplicity and mathematical calculation, and it is quite acceptable in the practical point of view. Meanwhile, considering the maneuverability of a ship under the special conditions such as in irregular waves, in wind or at high speed with small GM value, it is required that roll effect must be considered in the equation of ship motion. In this paper the author tried to build up the 4-degree-freedom motion equation by adding roll. And then, applying the M.M.G.'s mathematical model and with captive model test results the roll-coupled hydrodynamic derivatives were found. With these the author could make some simulating program for turning and zig-zag steering. Through the computer simulations, the effect of roll to the ship maneuver became clear. The effect of the wind force to the maneuverability was also found. Followings are such items that was found. 1) When roll is coupled in the maneuvering motion, the directional stability becomes worse and the turning diameter becomes smaller as roll becomes smaller as roll becomes larger. 2) When maneuver a ship in the wind, the roll becomes severe and the directional stability becomes worse. 3) When a ship turns to the starboard side, the wind blowing from 90 degree direction to starboard causes the largest roll and the largest turning diameter, and the wind from other direction doesn't change the turning diameter. 4) When a ship is travelling with a constant speed with rudder amidship, if steady wind blows from one direction, the ship turns toward that wind. This phenomenon is observed in the actual seaways.

  • PDF

Adsorption and Desorption Characteristics of Binary-component Volatile Organic compounds (Toluene-MEK) on Activated Carbon (이성분 휘발성유기화합물(Toluene-MEK)의 활성탄 흡착 및 탈착 특성)

  • Yu, Seon A;Cho, Jong Hoon;Park, Ji Yun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.421-428
    • /
    • 2017
  • In this study, we have investigated the characteristics of adsorption and desorption of toluene, methyl ethyl ketone (MEK) and their binary component using activated carbon. The BET analysis was performed to identify the characteristics of the activated carbon, and the desorption characteristics with temperature were examined to find out an optimum desorption temperature. Ten cyclic experiments of adsorption-desorption were performed, where each adsorption temperature was maintained at room temperature and desorption temperature at upto $120^{\circ}C$. In case of single component cyclic test, the efficiencies of adsorption and desorption decreased as the cycle increased. MEK which has lower affinity with activated carbon than toluene showed lower efficiencies of adsorption and desorption. In case of binary component cyclic test, a typical roll-up phenomenon was observed during adsorption process, where MEK reaches at breakpoint first and then was swept out by toluene.

Design of shearing process to reduce die roll in the curved shape part of fine blanking process (파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계)

  • Yong-Jun Jeon
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.

A Study on Roll Forming Simulation of Under Rail (언더레일의 롤포밍 공정 시뮬레이션에 관한 연구)

  • Jeong, Sang-Hwa;Lee, Sang-Hee;Kim, Gwang-Ho;Kim, Jae-Sang;Kim, Jong-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.78-85
    • /
    • 2008
  • Roll forming process is one of the most widely used processes in the world for forming metals. It can manufacture goods of the uniform cross section throughout the continuous processing. However, process analysis is very difficult because of the inherent complexity. Therefore, time is consuming and much money are needed for manufacturing goods. In order to overcome this difficulty, a new computational method based on the rigid-plastic finite element method is developed for the analysis of roll forming process. In this paper, the design of roll forming process and the simulation are performed to manufacture the upper member at under rail composed of three members. The cold rolled carbon steel sheet(SCP-1) is used in this simulation, and a flow stress equation is set up by conducting the tensile test. The upper member is designed using two types of design for a excellent design. Each types are simulated and compared with the strain distribution using SHAPE-RF software. In addition, the numerical magnitude of bow and camber which are the buckling phenomenon is estimated.

Numerical Prediction of Rotor Tip-Vortex Roll-Up in Axial Flights by Using a Time-Marching Free-Wake Method

  • Chung, Ki-Hoon;Na, Seon-Uk;Jeon, Wan-Ho;Lee, Duck-Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • The wake geometries of a two-bladed rotor in axial flights using a time-marching free-wake method without a non-physical model of the far wake are calculated. The computed free-wake geometries of AH-1G model rotor in climb flight are compared with the experimental visualization results. The time-marching free-wake method can predict the behavior of the tip vortex and the wake roil-up phenomena with remarkable agreements. Tip vortices shed from the two-bladed rotor can interact with each other significantly. The interaction consists of a turn of the tip vortex from one blade rolling around the tip vortex from the other. Wake expansion of wake geometries in radial direction after the contraction is a result of adjacent tip vortices begging to pair together and spiral about each other. Detailed numerical results show regular pairing phenomenon in the climb flights, the hover at high angle of attack and slow descent flight too. On the contrary, unstable motions of wake are observed numerically in the hover at low angle of attack and fast descent flight. It is because of the inherent wake instability and blade-vortex-interaction rather then the effect of recirculation due to the experimental equipment.

  • PDF

Beam Stabilization Beamforming Technique for Hull-Mounted Sonar Performance Enhancement (선저고정형 소나의 탐지성능 향상을 위한 빔 안정화 빔형성 기법)

  • Ryu, Young-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.129-137
    • /
    • 2008
  • Hull-Mounted Sonar(HMS) has been the main equipment to detect and track underwater threats like torpedoes and enemy submarines. The HMS has short warming-up time and is employable independently with sea-state and weather condition. But these bad environmental condition and ship maneuvering make ship's roll and pitch. Ship's roll and pitch make unstability of sensor position, then cause degradation of the HMS performance. In this paper, we will show how the unstability influences the HMS performance, propose the 'Beam Stabilization Beamforming Technique' to overcome these phenomenon. And present the effectiveness of proposed technique by comparing with conventional beamforming result.

A Visual Investigation of Coherent Structure Behaviour Under Tone-Excited Laminar Non-Premixed Jet Flame (음향 가진된 층류 비예혼합 분류 화염에서 거대 와류 거동에 관한 가시화 연구)

  • Lee, Kee-Man;Oh, Sai-Kee;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.275-285
    • /
    • 2003
  • A visualization study on the effect of forcing amplitude in tone-excited jet diffusion flames has been conducted. Visualization techniques are employed using optical schemes. which are a light scattering photography. Flame stability curve is attained according to Reynolds number and forcing amplitude at a fuel tube resonant frequency. Flame behavior is globally grouped into two from attached flame to blown-out flame according to forcing amplitude: one sticks the tradition flame behavior which has been observed in general jet diffusion flames and the other shows a variety of flame modes such as the flame of a feeble forcing amplitude where traditionally well-organized vortex motion evolves, a fat flame. an elongated flame. and an in-burning flame. Particular attention is focused on an elongation flame. which is associated with a turnabout phenomenon of vortex motion and on a reversal of the direction of vortex roll-up. It is found that the flame length with forcing amplitude is the direct outcome of the evolution process of the formed inner flow structure. Especially the negative part of the acoustic cycle under the influence of a strong negative pressure gradient causes the shapes of the fuel stem and fuel branch part and even the direction of vortex roll-up to dramatically change.

Three Dimensional Topology of Vortical Structure of a Round Jet in Cross Flow (횡단류 제트 와류구조의 3차원 토폴로지)

  • Shin, Dae Sig;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.918-927
    • /
    • 1999
  • In the fully developed internal flow fields, there are complex transition flows caused by interaction of the cross flow and jet when jet is Injected Into the flow. These interactions are studied by means of the flow visualization methods. An instantaneous laser tomographic method is used to reveal the physical mechanism and the structure of vortices formation in the branch pipe flow. The velocity range of cross flow of the pipe is 0.7m/s and the corresponding Reynolds number $R_{cf}$, based on the duct height is $5.6{\times}10^3$, diameter/height ratios(d/H) 0.14 and velocity ratios 3.0. Oil mist with the size of $10{\mu}m$ diameter is used for the scattering particle. The instantaneous topological features of the vortex ring roll-up of the jet shear layer and characteristics of this flow are studied in detail by performing flow visualization in rectangular duct flow. It is found that the formation and roll-up of ring vortices is a periodic phenomenon. The detailed topology of the vortices in the near field of a cross -flow jet and the mechanism associated with them give enforced hints of vortex breakdown within the vortex system due to the interaction of the jet and the cross-flow.