• 제목/요약/키워드: Roll-to-roll Mechanism

검색결과 112건 처리시간 0.025초

그라비어 인쇄에서 속도와 압력변화에 따른 시뮬레이션에 관한 연구 (A Study on the Computer Simulation in the Changing Velocity and Pressure in Gravure Printing.)

  • 박성준;임수만;윤종태
    • 한국인쇄학회지
    • /
    • 제25권1호
    • /
    • pp.53-64
    • /
    • 2007
  • Gravure printing is the most useful printing process than any other engraving printing method. According to the cell which is variable size and depth, ink is transferred substrates. So, the amount of ink from cells has a great effect on the qualities of final printed products. The variables effect on the printability of final products are proportion of the width and length, the rhelogical properties, roll speed etc. However the mechanism of gravure is difficult to study scientifically because of high speed and excessively small size of the cell. To approach the mechanism we experimented the real test by using gravure printability. The condition of variables of IGT is pressure and velocity. By using Polyflow 3. 10. 0 simulation software, we built up the theoretical model under the constant variables. Then, we compared the real test with the simulation results. Therefore, it is studied the mechanism of gravure scientifically and it can be analysed the effect of the variable conditions.

  • PDF

축대칭 초음속 제트에서의 마하파 방사에 관한 수치적 연구 (Numerical Analysis of the Mach Wave Radiation in an Axisymmetric Supersonic Jet)

  • 김용석;이덕주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.71-77
    • /
    • 2000
  • An axisymmetric supersonic jet is simulated at a Mach number of 1.5 and a Reynolds number of $10^5$ to identify the mechanism of sound radiation from the jet. The present simulation is performed based on the high-order accuracy and high-resolution ENO(Essentially Non-Oscillatory) schemes to capture the time-dependent flow structure representing the sound source. In this simulation, optimum expansion jet is selected as a target, where the pressure at nozzle exit is equal to that of the ambient pressure, to see pure shear layer growth without effect of change in jet cross section due to expansion or shock wave generated at nozzle exit. Shock waves are generated near vortex rings, and discernible pressure waves called Mach wave are radiated in the downstream direction with an angle from the jet axis, which is characteristic of high speed jet noise. Furthermore, vortex roll-up phenomena are observed through the visualization of vorticity contours.

  • PDF

Recycling Natural Rubber Vulcanizates through Mechanochemical Devulcanization

  • Jang G. K.;Das C. K.
    • Macromolecular Research
    • /
    • 제13권1호
    • /
    • pp.30-38
    • /
    • 2005
  • Sulfur-cured gum natural rubber vulcanizates were devulcanized using two different concentrations of diallyl disulfide. The devulcanization process was performed at $110^{\circ}C$ min in an open two-roll cracker-cum-mixing mill. Natural rubber vulcanizates having various sulfur/accelerator ratios were used to study the cleavage of monosulfide, disulfide, and polysulfide bonds. The properties of devulcanized natural rubber increased upon increasing the disulfide concentration and the mechanical properties of the revulcanized natural rubber increased upon decreasing the sulfur content in the original rubber vulcanizates. The scorch time and the maximum state of cure both increased when the ground vulcanizates were treated with higher amounts of disulfide. TGA and DMA were conducted to study the effects of the devulcanization on the thermal stability and the $T_g$ behavior of the vulcanizates. SEM analysis was conducted to study how the failure mechanism was affected by the devulcanization process. It was possible to recover $70-80\%$ of the original gum rubber properties by using this process. From IR spectroscopic analysis, we observed that the oxidation of the main chains did not occur during high-temperature milling.

자계 센서를 이용한 캡슐형 내시경의 위치 측정 (Position Detection of a Capsule-type Endoscope by Magnetic Field Sensors)

  • 박준병;강헌;홍예선
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.66-71
    • /
    • 2007
  • Development of a locomotive mechanism for the capsule type endoscopes will largely enhance their ability to diagnose disease of digestive organs. As a part of it, there should be provided a detection device of their position in human organs for the purpose of observation and motion control. In this paper, a permanent magnet outside human body was employed to project magnetic field on a capsule type endoscope, while its position dependent flux density was measured by three hall-effect sensors which were orthogonally installed inside the capsule. In order to detect the 2-D position data of the capsule with three hall-effect sensors including the roll, pitch and yaw angle, the permanent magnet was extra translated during the measurement. In this way, the 2-D coordinates and three rotation angles of a capsule endoscope on the same motion plane with the permanent magnet could be detected. The working principle and performance test results of the capsule position detection device were introduced in this paper showing that they could be also applied to 6-DOF position detection.

Proposed large-scale modelling of the transient features of a downburst outflow

  • Lin, W.E.;Orf, L.G.;Savory, E.;Novacco, C.
    • Wind and Structures
    • /
    • 제10권4호
    • /
    • pp.315-346
    • /
    • 2007
  • A preceding companion article introduced the slot jet approach for large-scale quasi-steady modelling of a downburst outflow. This article extends the approach to model the time-dependent features of the outflow. A two-dimensional slot jet with an actuated gate produces a gust with a dominant roll vortex. Two designs for the gate mechanism are investigated. Hot-wire anemometry velocity histories and profiles are presented. As well, a three-dimensional, subcloud numerical model is used to approximate the downdraft microphysics, and to compute stationary and translating outflows at high resolution. The evolution of the horizontal and vertical velocity components is examined. Comparison of the present experimental and numerical results with field observations is encouraging.

가상현실 대화용 가상걸음 장치의 설계 (Design of a Virtual Walking Machine for Virtural Reality Interface)

  • 윤정원;류제하
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1044-1051
    • /
    • 2004
  • This paper described a novel locomotion interface that can generate infinite floor for various surface, named as virtual walking machine. This interface allows users to participate in a life-like walking experience in virtual environments, which include various terrains such as plains, slopes and stair ground surfaces. The interface is composed of two three-DOF (X, Y, Yaw) planar devices and two four-DOF (Pitch, Roll, Z, and relative rotation) footpads. The planar devices are driven by AC servomotors for generating fast motions, while the footpad devices are driven by pneumatic actuators for continuous support of human weight. To simulate natural human walking, the locomotion interface design specification are acquired based on gait analysis and each mechanism is optimally designed and manufactured to satisfy the given requirements. The designed locomotion interface allows natural walking(step: 0.8m, height: 20cm, load capability: 100kg, slope:30deg) for various terrains.

승마용 헬스 케어 로봇 시스템과 신체 상태 지수 관리기술 (Development of Riding Robot System and Body State Index for Healthcare Service)

  • 임미섭;임준홍
    • 로봇학회논문지
    • /
    • 제4권4호
    • /
    • pp.327-333
    • /
    • 2009
  • This paper describe the riding robot system named by "RideBot" which is a riding robot like as a horse. In order to simulate the riding motions, we develope the saddle mechanism which can generate 3 DOF motions including pitch, roll, and bounce movement, and also we controlled the riding motions and the intention of horseman. To generate the riding motions with the bodily sensation, we developed Novel Washout Filter and the algorithms for motion control. And also, we developed some health care service for the health care of horseman. A body state index was proposed that evaluates the personal health state from both the measured physiological variables and the surveyed questions. The physiological variables such as weight, blood pressure, heart rate variability (HRV), accelerated state photoplethysmograph(APG), body fat, and happiness index were measured by the specially designed bio-handle system and survey questions. The efficiency of the proposed ride robot is evaluated in the experiments.

  • PDF

페이스 밀링 가공시 버형성에 관한 연구 (II) (A Study on Burr Formation in Face Milling(II))

  • 한상우;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.810-813
    • /
    • 2000
  • Burr makes trobles on manufacturing process due to deburring cost, quality of products and productivity. This paper described the results of experimental study on the influence of the cutting parameters on the formation of exit burrs in face milling. The cutting parameters were investigated changing exit angle, rake nagle , lead angle in tool geometry as well as feed per tooth. Also we carried out experimets on several materials. Using the result of experimental study, burr types are classified according to appearance and formation mechanism in exit burr and we are considered the burr formation in each type of burr.

  • PDF

인체형 이족보행로봇의 개발 (Development of a Human-Sized Biped Walking Robot)

  • 최형식;박용헌;김영식
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.484-491
    • /
    • 2002
  • We developed a new type of human-sized BWR (biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. A new type of actuator for the robot is proposed, which is composed of four bar link mechanism driven by the ball screw. The robot overcomes the limit of the driving torque of conventional BWRs. The BWR was designed to walk autonomously by adapting small DC motors for the robot actuators and has a space to board DC battery and controllers. In the performance test, the BWR performed sitting-up and down motion, and walking motion. Through the test, we found the possibility of a high performance biped-walking.

압연 공정에서 꼬임 발생 메커니즘에 대한 기초 연구 (Fundamental Study on Mechanism of Strip Pinching in Rolling)

  • 이창우;신기현;홍완기;정동택
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.127-132
    • /
    • 2004
  • It is very important to find out causes of strip pinching for the high quality of products and fer the stable operation of rolling system. We have examined the strip pinching from three points of view to find out the causes of strip pinching in rolling system: strip shape, rolling operation conditions, and behavior of strip. Wedge, off center, and difference of rolling force through CMD(Cross machine direction) are found to possibly provide major initial causes of strip pinching. Generally strip pinching occurred in the tail of strip. Thus, computer simulations by using a FEM code were also carried out to find out the initial mechanism of strip pinching depending upon the force and geometric boundary conditions at the time of strip tail rolling. The strong compression force effect due to the sudden release of strip tail from the work roll and non-uniform strip tail shape (ex. Fish tail) across the CMD were found to provide possible major causes of strip pinching.