• 제목/요약/키워드: Roll motion simulation

검색결과 132건 처리시간 0.026초

화장칼만필터를 이용한 스티랩다운 관성항법시스템의 수평축 정렬 알고리즘 (A Leveling Algorithm for Strapdown Inertial Navigation System Using Extended Kalman Filter)

  • 홍현수;박찬국;한형석;이장규
    • 제어로봇시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.1231-1239
    • /
    • 2001
  • This paper presents a new leveling algorithm that estimates the initial horizontal angles composed of roll angle and pitch angle for a moving or stationary vehicle. The system model of the EKF is designed by linearizing the nonlinear Euler angle differential equation. The measurement models are designed for the moving case and for the stationary case, respectively. The simulation results show that the leveling algorithm is ade-quate not only for acquiring the initial horizontal angles of the vehicle in the motion with acceleration and rotation but also for the stationary one.

  • PDF

Position Control of a 3 dof Closed -loop Cylinder System Using ER Valve Actuators

  • Park, Seug-Bok;Cho, Myung-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권2호
    • /
    • pp.48-56
    • /
    • 2001
  • This paper presents the position tracking control of a closed-loop cylinder system using electro-rheological (ER) valve actuators. After manufacturing three sets of cylindrical ER valves on the basis of Bingham model of ER fluid, a 3 dof(degree-freedom) closed-loop cylinder system having the heave, roll and pitch motions is constructed. The governing equations of motion are derived using Lagrange's equation and a control model is formulated by considering nonlinear characteristics of the system, Sliding mode controllers are the designed for these ER valve actuators in order to achieve position tracking control. The effectiveness of trajectory tracking control performance of the proposed cylinder system is demonstrated through computer simulation and experimental implementation of the sliding mode controller.

  • PDF

ER 밸브 작동기를 이용한 3자유도 폐회로 실린더 시스템의 위치제어 (Position Control of a 3 dof Closed-loop Cylinder System Using ER Valve Actuators)

  • 최승복;조명수
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.165-173
    • /
    • 2000
  • This Paper presents the position tracking control of a closed-loop cylinder system using electro-rheological(ER) valve actuators. After manufacturing three sets of cylindrical ER valves on the basis of Bingham model of ER fluid, a 3 dof(degree-of-freedom) closed-loop cylinder system having the heave, roll and pitch motions is constructed. The governing equations of motion are derived using Lagrange's equation and a control model is formulated by considering nonlinear characteristics of the system. Sliding mode controllers are then designed fer these ER valve actuators in order to achieve position tracking control. The effectiveness of trajectory tracking control performance of the proposed cylinder system is demonstrated through computer simulation and experimental implementation of the sliding mode controller.

  • PDF

7 자유도 차량 모델과 출력 되먹임을 이용한 자동차 능동 현가장치 설계에 관한 연구 (Output feedback, decentralized controller design for an active suspension system using 7 DOF full car model)

  • 노태수;정길도;홍동표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.871-875
    • /
    • 1996
  • The Output feedback linear quadratic regulator control is applied to the design of active suspension system using 7 DOF full car model. The performance index reflects the vehicle vertical movement, pitch and roll motion, and minimization of suspension stroke displacements in the rattle space. The elements of gain matrix are approximately decoupled so that each suspension requires only local information to generate the control force. The simulation results indicates that the output feedback LQ controller is more effective than purely passive or full state feedback active LQ controllers in following the road profile at the low frequency range and suppressing the road disturbance at the high frequency ranges.

  • PDF

선박 운항 시뮬레이터에서 해양파와 연동된 선박 및 부표 운동의 실시간 가시화 (Real-time Visualization of Ship and Buoy Motions Coupled with Ocean Waves in a Ship Handling Simulator)

  • 여동진;차무현;문두환
    • 한국CDE학회논문집
    • /
    • 제16권3호
    • /
    • pp.227-235
    • /
    • 2011
  • Ship handling simulator should have capabilities of calculating ship motions (heave, pitch, and roll) at given sea state and displaying the calculated motions through a real-time 3D visualization system. Motion solver of a ship handling simulator generally calculates those motions in addition to position for an own ship, a main simulation target, but provides only position information for traffic ships. Therefore, it is required to simulate real-time traffic ship and buoy motions coupled with ocean waves in a ship handling simulator for the realistic visualization. In the paper, the authors propose a simple dynamics model by which ship and buoy motions are calculated with the input data of wave height and discuss a method for the implementation of a ship and buoy motions calculation module.

유전 알고리듬을 이용한 토션빔 현가장치의 기구학적 최적설계 (Kinematic Optimum Design of a Torsion-Beam Suspension Using Genetic Algorithms)

  • 옥진규;백운경;손정현
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.25-30
    • /
    • 2006
  • This study is about an optimum design to improve the kinematic and compliance characteristics of a torsion-beam suspension system. The kinematic and compliance characteristics of an initial design of the suspension was obtained through a roll-mode analysis. The objective function was set to minimize within design constraints. The coordinates of the connecting point between the torsion-beam and the trailing arm were treated as design parameters. Since the torsion-beam suspension has large nonlinear effects due to kinematic and elastic motion, Genetic Algorithms were employed for the optimal design. The optimized results were verified through a double-lane change simulation using the full vehicle model.

Design and Implementation of Fuzzy Logic Controller for Wing Rock

  • Anavatti, Sreenatha G.;Choi, Jin Young;Wong, Pupin P.
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.494-500
    • /
    • 2004
  • The wing rock phenomenon is a high angle of attack aerodynamic motion manifested by limit cycle roll oscillations. Experimental studies reveal that direct control and manipulation of leading edge vortices, through the use of 'blowing' techniques is effective in the suppression of wing rock. This paper presents the design of a robust controller for the experimental implementation of one such 'blowing' technique - recessed angle spanwise blowing (RASB), to achieve wing rock suppression over a range of operating conditions. The robust controller employs Takagi - Sugeno fuzzy system, which is fine-tuned by experimental simulations. Performance of the controller is assessed by real-time wind tunnel experiments with an 80 degree swept back delta wing. Robustness is demonstrated by the suppression of wing rock at a range of angles of attack and free stream velocities. Numerical simulation results are used to further substantiate the experimental findings.

함정용 탐색레이다 전자빔보상 알고리즘 (Electronic Beam Stabilization Algorithm For Ship-borne Surveillance Radar)

  • 이민준;김승각
    • 대한전자공학회논문지TC
    • /
    • 제41권2호
    • /
    • pp.71-75
    • /
    • 2004
  • 함정의 피치 및 롤의 변화에 따라 탑재된 3차원 위상배열 레이다의 빔조향 방향이 변화하게 된다. 이와 같은 환경에서 빔을 원하는 방향으로 조향하기 위해서 기계적인 안정화 장치나 전자빔 보상 방법을 사용할 수 있다. 레이다의 무게나 부피등의 측면을 고려하면 전자빔 보상 방법이 장점이 있다. 이 논문에서는 전자빔 보상방법을 제안하고 시뮬레이션을 통해 결과를 제시하였다.

Constant Altitude Flight Control for Quadrotor UAVs with Dynamic Feedforward Compensation

  • Razinkova, Anastasia;Kang, Byung-Jun;Cho, Hyun-Chan;Jeon, Hong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권1호
    • /
    • pp.26-33
    • /
    • 2014
  • This study addresses the control problem of an unmanned aerial vehicle (UAV) during the transition period when the flying mode changes from hovering to translational motion in the horizontal plane. First, we introduce a compensation algorithm that improves height stabilization and reduces altitude drop. The main principle is to incorporate pitch and roll measurements into the feedforward term of the altitude controller to provide a larger thrust force. To further improve altitude control, we propose the fuzzy logic controller that improves system behavior. Simulation results presented in the paper highlight the effectiveness of the proposed controllers.

속도및 쿼터니언 부분 정합방식에 의한 전달정렬 알고리즘 (A transfer alignment algorithm using velocity and quaternion partial matching methods)

  • 송기원;전창배;유준
    • 제어로봇시스템학회논문지
    • /
    • 제3권3호
    • /
    • pp.238-243
    • /
    • 1997
  • A new transfer alignment algorithm using the velocity and the quaternion partial matching methods is proposed to reduce the effect of a ship's Y-axis flexure on the performance of azimuth error estimation of Kalman filter. The simulation results show that it can significantly reduce the effect of Y-axis flexure on error estimation by the transfer alignment algorithm. As its results, azimuth transfer alignment error is reached up to 3 mrad under proper roll and pitch attitude motion of the ship.

  • PDF