• 제목/요약/키워드: Roll damping

검색결과 104건 처리시간 0.023초

시뮬레이션과 모형시험을 통한 핀 안정기의 성능평가 (Performance Evaluation of Fin-Stabilizer by Model Test and Time-domain Simulation)

  • 홍사영;김현조;최윤락;신영균;유병석;이승준
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.86-90
    • /
    • 2001
  • Demand of good seakeeping perfomace is increasing for sea going vessels such as cruisers, naval ships and container ships. Especillay roll motion is one of major concerns in evaluation of seakeeping performance due to its large resonace motion. Since large roll resonance motion is mainly arised from inherent small damping. use of additional mechnism to provide roll damping can significantly reduce roll motion. In this paper, a reliable performace evaluation method of fin stabilizer, which is very useful for stabilizing roll motion of mid and high speed vessls, is described. Model test and time domain simulation methods are adopted for performance evaluation in which real operating situation of fin stabilizer can be exactly modelled. Model test and simulation results show good correlations between model test and simulation results.

  • PDF

회전발사체 롤댐핑 특성에 관한 고속 유동장 실험연구 (An Experimental Study on Roll-Damping Characteristics of a Spinning Projectile at High Speed Region)

  • 오세윤;이도관;김성철;김상호;안승기
    • 한국항공우주학회지
    • /
    • 제39권10호
    • /
    • pp.912-918
    • /
    • 2011
  • 본 연구의 목적은 풍동실험을 통해 회전발사체에서 발생하는 동적 롤댐핑 특성을 실험적으로 측정하는데 있었으며, 이를 위해 약 12,000 rpm으로 회전하는 회전발사체 실험모형에 작용하는 롤댐핑 특성의 측정을 위한 고속풍동실험을 국방과학연구소 삼중음속풍동에서 수행하였다. 실험시의 마하수는 0.7~1.05까지의 천음속 영역이었으며 이때의 받음각 구간은 -4~+10 deg이었다. 풍동실험 측정기법의 유효성 평가를 위해 동일형상 모형에 대해 기 수행하였던 롤댐핑 측정결과와의 비교검토를 수행하였다.

Hydrodynamic analysis of floating structures with baffled ARTs

  • Kim, San;Lee, Kang-Heon
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.1-15
    • /
    • 2018
  • In ocean industry, free surface type ART (Anti Roll tank) system has been widely used to suppress the roll motion of floating structures. In those, various obstacles have been devised to obtain the sufficient damping and to enhance the controllability of freely rushing water inside the tank. Most of previous researches have paid on the development of simple mathematical formula for coupled ship-ARTs analysis although other numerical and experimental approaches exist. Little attention has been focused on the use of 3D panel method for preliminary design of free surface type ART despite its advantages in computational time and general capacity for hydrodynamic damping estimation. This study aims at developing a potential theory based hydrodynamic code for the analysis of floating structure with baffled ARTs. The sloshing in baffled tanks is modeled through the linear potential theory with FE discretization and it coupled with hydrodynamic equations of floating structures discretized by BEM and FEM, resulting in direct coupled FE-BE formulation. The general capacity of proposed formulation is emphasized through the coupled hydrodynamic analysis of floating structure and sloshing inside baffled ARTs. In addition, the numerical methods for natural sloshing frequency tuning and estimation of hydrodynamic damping ratio of liquid sloshing in baffled tanks undergoing wave exiting loads are developed through the proposed formulation. In numerical examples, effects of natural frequency tuning and baffle ratios on the maximum and significant roll motions are investigated.

소형선박의 횡요방지 제어장치 연구 (A Study on the Anti-Rolling Control System of Small Ship)

  • 김시영;유재복;문철진
    • 수산해양교육연구
    • /
    • 제11권2호
    • /
    • pp.184-202
    • /
    • 1999
  • The roll damping characteristics of the three models of a small fishing(3 ton class fishing vessel), such as the bare hull, hull with bilge keels, and hull with bilge keels and a central wing are investigated by the free roll and head waves tests in calm water in a towing tank with the various forward speeds, initial angles and OG's. The experimental results are compared with the numerical results of mathematical modelings by the energy method for these three models and the energy dissipation patterns are also compared. And the wave length variations are also included. The experimental results are compared with the numerical results of mathematical modelings by the energy method for these three models and the energy dissipation patterns are also compared. The roll damping moment of the models is increased for zero speed cases, but as the speed increases, the effect of the waves on the roll damping of the models with the additional devices is negligible due to the much increased damping caused by the lift increase.

  • PDF

PIV시스템을 이용한 규칙파중 2차원 사각형 부유식 구조물 주위의 유동특성 연구 (Experimental Study on Flow Characteristics of Regular Wave Interacting with Rectangular Floating Structure Using PIV Technique)

  • 정광효;전호환
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.41-53
    • /
    • 2006
  • This experimental study investigated the flow characteristics for regular waves passing a rectangular floating structure in a two-dimensional wave tank. The particle image velocimetry (PIV) was employed to obtain the velocity field in the vicinity of the structure. The phase average was used to extract the mean flow and turbulence property from repeated instantaneous PIV velocity profiles. The mean velocity field represented the vortex generation and evolution on both sides of the structure. The turbulence properties, including the turbulence length scale and the turbulent kinetic energy budget were investigated to characterize the flow interaction between the regular wave and the structure. The results shaw the vortex generated near the structure corners, which are known as the eddy-making damping or viscous damping. However, the vortex induced by the wave is longer than the roll natural period of the structure, which presents the phenomena opposing the roll damping effect; that is, the vortex may increase the roll motion under the wave condition longer than the roll natural period.

Optimization of ride comfort for a three-axle vehicle equipped with interconnected hydro-pneumatic suspension system

  • Saglam, Ferhat;Unlusoy, Y. Samim
    • Advances in Automotive Engineering
    • /
    • 제1권1호
    • /
    • pp.1-20
    • /
    • 2018
  • The aim of this study is the optimization of the parameters of interconnected Hydro-Pneumatic (HP) suspension system of a three-axle vehicle for ride comfort and handling. For HP suspension systems of equivalent vertical stiffness and damping characteristics, interconnected HP suspension systems increase roll and pitch stiffness and damping characteristics of the vehicle as compared to unconnected HP suspension systems. Thus, they result in improved handling and braking/acceleration performances of the vehicle. However, increased roll and pitch stiffness and damping characteristics also increase roll and pitch accelerations, which in turn result in degraded ride comfort performance. Therefore, in order to improve both ride comfort and vehicle handling performances simultaneously, an optimum parameter set of an interconnected HP suspension system is obtained through an optimization procedure. The objective function is formed as the sum of the weighted vertical accelerations according to ISO 2631. The roll angle, one of the important measures of vehicle handling and driving safety, is imposed as a constraint in the optimization study. Upper and lower parameter bounds are used in the optimization in order to get a physically realizable parameter set. Optimization procedure is implemented for a three-axle vehicle with unconnected and interconnected suspension systems separately. Optimization results show that interconnected HP suspension system results in improvements in both ride comfort and vehicle handling performance, as compared to the unconnected suspension system. As a result, interconnected HP suspension systems present a solution to the conflict between ride comfort and vehicle handling which is present in unconnected suspension systems.

CFD 해석을 활용한 선박의 순수 횡동요 시험 연구 (Study on Pure Roll Test of a Ship Using CFD Simulation)

  • 마이티로안;보안코아;윤현규
    • 대한조선학회논문집
    • /
    • 제59권6호
    • /
    • pp.338-344
    • /
    • 2022
  • Roll moment usually is ignored when analyzing the maneuverability of surface ships. However, it is well known that the influence of roll moment on maneuverability is significant for ships with small metacentric height such as container ships, passenger ships, etc. In this study, a pure roll test is performed to determine the hydrodynamic derivatives with respect to roll motion as added mass and damping. The target ship is an autonomous surface ship designed to carry containers with a small drift and large freeboard. The commercial code of STAR CCM+ software is applied as a specialized tool in naval hydrodynamic based on RANS equation for simulating the pure roll of the ship. The numerical uncertainty analysis is conducted to verify the numerical accuracy. By distinguishing the in-phase and out-of-phase from hydrodynamic forces and moments due to roll motion, added mass derivatives and damping derivatives relative to roll angular velocity are obtained.

연속 가변 댐퍼에 의한 반능동 현가장치의 고 자유도 제어기 (High Tunable Control Algorithm for Semi-active Suspension by a Normal Type CDC Damper)

  • 최주용
    • 제어로봇시스템학회논문지
    • /
    • 제16권11호
    • /
    • pp.1096-1103
    • /
    • 2010
  • This paper proposes CDC (Continuous Damping Control) algorithm and verifies in multi-body dynamic vehicle. In order to distinguish a road profile on driving, waviness calculated by the filtered vertical-accelerations of sprung and unsprung masses is introduced. Sky-hook control is used at a low waviness road and constant damping level control is used at a high waviness road, where the hard damping level is determined by waviness, roll rate, acceleration, and deceleration. The damping levels of ride, anti-roll, anti-squat, and anti-dive modules are calculated by tuning parameters which is dependent upon vehicle velocity. Therefore this high tunable algorithm is useful to improve the ride and handling performance under various driving conditions. In the simulations, tire and dampers are modelled by SWIFT (Short Wavelength Intermediate Frequency Tire) model and 1st order delay model, and results are compared with conventional damper's.

강제동요를 이용한 원형실린더 점성 롤댐핑 연구 (Study on the Viscous Roll Damping around Circular Cylinder Using Forced Oscillations)

  • 양승호
    • 한국산학기술학회논문지
    • /
    • 제18권2호
    • /
    • pp.71-76
    • /
    • 2017
  • 선박 및 해양구조물 설계에 있어 롤댐핑에 관한 문제는 유체점성과 현상자체의 비선형성으로 인해 공학자들에게 있어 난제로 남아있다. 본 연구에서는 강제동요방법을 이용하여 원형실린더의 점성 롤감쇠에 관한 연구를 수행하였다. 토크 센서를 이용하여 강제동요 시 발생하는 롤모멘트(roll moment)를 강제동요 주기별로 계측하였고 이를 실험식(empirical formula)과 비교 검토 하였다. 점성에 의한 전단력으로부터 계측된 토크의 크기가 상대적으로 작은 값임에도 불구하고 실험식으로부터 얻어진 계산값들과 정성적으로 유사한 결과를 보였고, 일부 주기에서는 정량적으로도 잘 일치하는 결과를 보였다. 또한, PIV 계측기법을 통해 원형실린더 벽면주위의 유동을 면밀히 관찰하였으며, 유체점성으로 인해 원형실린더 벽면근처에서 경계층이 형성되고 자유수면에서 원형실린더의 주기적인 강제회전동요로 인해 미소한 크기의 파가 생성(wave making)됨을 PIV 계측결과의 분석을 통해 확인하였다. 본 연구에서는 점성 롤감쇠로 인한 실험식의 적합성을 모형시험을 통해 확인하였고, PIV 계측기법을 통해 벽면주위의 유체점성으로 인한 조파현상을 입증하였다.

전산유체역학을 이용한 해양작업지원선의 빌지킬 유무에 따른 횡동요 성능에 관한 연구 (A study for roll damping performance of a platform supply vessel with or without bilge keel using CFD)

  • 석준;김성용;양영준;진송한;박종천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권9호
    • /
    • pp.791-798
    • /
    • 2016
  • 본 연구에서는 상용 점성 유동 해석 소프트웨어인 Star-CCM+를 이용하여 110m급 해양작업지원선의 빌지킬 효과에 따른 횡동요 성능에 관한 연구를 수행하였다. 해양작업지원선에 관한 연구에 앞서 DTMB 5512 선형에 대한 수치 시뮬레이션을 통해 실험과 비교 검증하였다. 검증된 결과를 바탕으로 빌지킬 유무에 따른 해양작업지원선의 자유 횡동요 시뮬레이션을 수행하였으며, 이를 통해 각각의 무차원 감쇠 계수와 횡동요 응답진폭함수를 산출하였다.