• Title/Summary/Keyword: Roll Interference

Search Result 42, Processing Time 0.02 seconds

Study on Characteristics of the Forward Link Signal for the UHF RFID Reader (UHF 대역 RFID 리더의 순방향 링크 신호 특성에 관한 연구)

  • Kim, Do-Yun;Jang, Byung-Jun;Yoon, Hyun-Goo;Park, Jun-Seok;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.602-611
    • /
    • 2007
  • In this paper, the forward link of UHF RFID system is modeled in accordance with the EPCglobal class 1 generation 2(EPCglobal C1G2) UHF Radio-Frequency Identity protocol specification at $860{\sim}960MHz$. Based on the constructed model, characteristics on the forward link signal for the EPCglobal C1G2 RFID reader are simulated with the help of a MATLAB softwarein order to extract the design parameters of a transmit digital filter which meets the Korean RFID regulations. Herein, the forward link model is consisted of PIE source coding, transmit digital filter, modulation, local oscillator, and antenna. From the simulation results, the ranges of three design parameters(roll-off factor, cutoff frequency, the number of tabs) for transmit digital filter are obtained with different modulation techniques and the Tari(type a reference interval) values. Finally, DSB/SSB-ASK modulation technique can not satisfy the EPCglobal C1G2 specification when Tari equals to $6.25{\mu}sec$ in a multiple-reader environment. Consequently this paper can provide a guideline for design parameters of a RFID reader as well as the basic scheme of analyzing frequency interference problems in RFID environments, including multiple-reader and dense-reader environments.

Performance of 8SQAM System in a Nonlinearly Amplified Channel Environment (비선형 증폭 채널 환경에서 8SQAM 시스템의 성능)

  • 성봉훈;서종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7C
    • /
    • pp.669-677
    • /
    • 2003
  • A new Modem technique - 8SQAM(8-state Superposed Quadrature Amplitude Modulation) - for use in power and bandwidth limited digital communication system is proposed. 8SQAM is free of inter-symbol interference(ISI) and generates output signals which have a smooth and continuous phase transition and a reduced envelope fluctuation by keeping correlation between amplitudes and phases of two subsequent symbols. Accordingly, 8SQAM, as compared with a conventional 8PSK, is influenced a little by ISI and inter-modulation(IM) caused by nonlinear distortions. In this paper, the performance of the 8SQAM system, in a nonlinearly amplified channel impaired by additive white Gaussian noise(AWGN), ISI and IM, is analyzed via computer simulation. The simulation result shows that 8SQAM outperforms 8PSK with roll-off value of $\alpha$=0.25 by 2.5dB in CNR to maintain BER=1$\times$10$^{-4}$ when input back-off(IBO) of HPA is 3dB.

Development of Universal Sports Simulator Fusing 5 Senses (범용 오감 융합형 스포츠 시뮬레이터의 개발)

  • Lee, Young-Dae;Lee, Won-Sik;Kang, Jeong-Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2015
  • Existing sports simulators on the market focus on the motion of platform or reality expression using basic visual contents, and are limited to entertainment products. Therefore, the stimulus on 5 senses is not good enough to be applied on high virtual reality. Moreover, there are not enough professional contents to be applied to an educational sports simulator. In this paper, we developed a sport platform by separating the multi axis based common platform module and the sports application module. We designed the common platform which has 4 degrees of freedom such as surge, sway, heave and yaw motion. This platform has the purpose of stabilizing motion and minimizing interference. The changeable sport module which is attached to the common module has 2 degrees of freedom such as roll and pitch, so that it can be applied to the various fields of 2 degrees of freedom virtual reality sports such as horse riding and yacht.

A novel method for testing accuracy of bite registration using intraoral scanners

  • Lydia Kakali;Demetrios J. Halazonetis
    • The korean journal of orthodontics
    • /
    • v.53 no.4
    • /
    • pp.254-263
    • /
    • 2023
  • Objective: The evidence on the accuracy of bite registration using intraoral scanners is sparse. This study aimed to develop a new method for evaluating bite registration accuracy using intraoral scanners. Methods: Two different types of models were used; 10 stone models and 10 with acrylic resin teeth. A triangular frame with cylindrical posts at each apex (one anterior and two posteriors) was digitally designed and manufactured using three-dimensional (3D) printing. Such a structure was fitted in the lingual space of each maxillary and mandibular model so that, in occlusion, the posts would contact their opposing counterparts, enforcing a small interocclusal gap between the two arches. This ensured no tooth interference and full contact between opposing posts. Bite registration accuracy was evaluated by measuring the distance between opposing posts, with small values indicating high-accuracy. Three intraoral scanners were used: Medit i500, Primescan, and Trios 4. Viewbox software was used to measure the distance between opposing posts and compute roll and pitch. Results: The average maximum error in interocclusal registration exceeded 50 ㎛. Roll and pitch orientation errors ranged above 0.1 degrees, implying an additional interocclusal error of around 40 ㎛ or more. The models with acrylic teeth exhibited higher errors. Conclusions: A method that avoids the need for reference hardware and the imprecision of locating reference points on tooth surfaces, and offers simplicity in the assessment of bite registration with an intraoral scanner, was developed. These results suggest that intraoral scanners may exhibit clinically significant errors in reproducing the interocclusal relationships.

Research on Antennas Placement of Line-of-sight Datalink for Transport Drone (수송드론 가시선 데이터링크 안테나 배치 방안 연구)

  • Sung-Ho Lim;Kilyoung Seong;Jae-Kyung Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.63-75
    • /
    • 2023
  • The antenna radiation pattern was simulated by arranging the mounted antennae of the transport drone in 5 locations where radio interference was expected to be low, and they could be mounted. Depending on the mounting location, the probability that the link margin was less than 0 dB was (5.41 - 26.92) %. When two antennae were mounted and one was selected, the probability was (0.11 - 3.3) %. Among the arrangements, placing one antenna in the upper part of the front and one in the lower part of the rear showed the lowest link fail probability. In this case, it was analyzed that if the attitude roll and pitch of the aircraft were limited, link fail would not occur at an operating distance of 12 km or less. An antenna selection formula for this case was derived, and a method of reducing frequent alternation of antennae was applied to maintain a stable link.

Efficient Measurement of Wind Velocity and Direction Using Dual Rotor Wind Power Generator in Vessel (Dual Rotor 풍력발전을 이용한 선박에서의 효과적인 풍향 풍속 측정)

  • Choi, Won-Yeon;Park, Gye-Do;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.309-317
    • /
    • 2010
  • This paper proposes an efficient measurement system for the velocity and direction of the wind using the dual rotor wind power generator in vessel. Conventional digital measurement system recognizes the direction and the velocity of the wind using the electric compass or synchronous motor and Vane probe method using hall sensors. But each system has its own short-comings: the synchronous motor has a larger measurement error than the magnetic compass and magnetic compass is weak for the external disturbances such as fluctuation of the vessel. To compensate these short-comings, this paper proposes a new compensation algorithm for the fluctuation errors according to the external interference and the unexpected movement of the vessel along the roll and pitch directions. The proposed system is implemented with the dual compasses and a synchronous motor. The proposed independent power generation system can be operated by itself and can raise the efficiency of the wind power generation systems of 30 ~ 400 W installed along the vertical and horizontal axes. The proposed system also realizes the efficient and reliable power production system by the MPPT algorithm for the real-time recognition of the wind direction and velocity. An advanced switching algorithm for the battery charging system has been also proposed. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

Development of Tire Lateral Force Monitoring System Using SKFMEC (SKFMEC를 이용한 차량의 타이어 횡력 감지시스템 개발)

  • Kim, Jun-Yeong;Heo, Geon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1871-1877
    • /
    • 2000
  • Longitudinal and lateral forces acting at tire are known to be closely related to the tractive ability, braking characteristics, handling stability and maneuverability of ground vehicles. However, it is not feasible in the operating vehicles to measure the tire forces directly because of high cost of sensors, limitations in sensor technology, interference with the tire rotation and harsh environment. In this paper, in order to develop tire force monitoring system, a new vehicle dynamics monitoring model is proposed including the roll motion. Based on the monitoring model, tire force monitoring system is designed to estimate the lateral tire force acting at each tire. A newly proposed SKFMEC (Scaled Kalman Filter with Model Emr Compensator) method is developed utilizing the conventional EKF (Extended Kalman Filter) method. Tire force estimation performance of the SKFMEC method is evaluated in the Matlab simulations where true tire force data is generated from a 14 DOF vehicle model with a combined-slip Magic Formula tire model.

Flapping Propulsion of Oscillating Flat Plates (진동하는 평판들에서의 플래핑 추진)

  • Ahn, June-Sung;Han, Cheol-Heui;Kim, Chang-Hee;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.118-126
    • /
    • 2004
  • The propulsive characteristics of oscillating flat plates are investigated using a discrete vortex method. The plates and their wakes are represented by discrete point vortices. To analyze the closely coupled aerodynamic interference between the plates, a vortex core model and a vortex core addition scheme are combined. A calculated wake shape for a flat plate in heaving oscillation is compared with flow visualization. The effect of wake shapes on the propulsive characteristics of the plates in pitching oscillation is investigated. The propulsive characteristics of oscillating plates with three cases (1. one is stationary and another is oscillating, 2. both oscillating in phase, 3. both oscillating out of phase) are calculated. The plates oscillating out of phase showed the largest thrust force among the three cases.

Development of a 6 degrees-of-freedom micro stage for ultra precision positioning (초정밀작업을 위한 6자유도 마이크로 스테이지의 개발)

  • Kim, Kyung-Chan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.372-379
    • /
    • 1998
  • A new 6 degrees-of-freedom micro stage, based on parallel mechanisms and actuated by using piezoelectric elements, has been developed for the application of micro positioning such as semiconductor manufacturing devices, high precision optical measurement systems, and high accurate machining. The micro stage structure consists of a base platform and an upper platform(stage). The base platform can effectively generates planar motion with yaw motion, while the stage can do vertical motion with roll and pitch motions with respect to the base platform. This separated structure has an advantage of less interference among actuators. The forward and inverse kinematics of the micro stage are discussed. Also, through linearization of kinematic equations about an operating point on the assumption that the configuration of the micro stage remains essentially constant throughout a workspace is performed. To maximize the workspace of the stage relative to fixed frame, an optimal design procedure of geometric parameter is shown. Hardware description and a prototype are presented. The prototype is about 150mm in height and its base platform is approximately 94mm in diameter. The workspace of the prototype is obtained by computer simulation. Kinematic calibration procedure of the micro stage and its results are presented.

A Study on Convolutionally-Coded Overlapped Multicarrier DS-CDMA Systems in a Multipath Fading Channel (다중경로 페이딩 채널에서 콘볼루션 채널코딩을 적용한 중복된 멀티캐리어 DS-CDMA 시스템에 관한 연구)

  • Oh, Jung-Hun;Hwang, Yong-Nam;Youm, Joeng-Won;Kim, Ki-Doo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.1
    • /
    • pp.76-87
    • /
    • 2000
  • Multicarrier DS-CDAM is an effective approach to realize wideband CDMA system in a multipath fading channeal. In this paper, we propose a cinvolutionally-coded overlapped multicarrier DS-CDMA system, and show the performance improvement by comparing with conventional multicarrier DS-CDMA system. We consider the case of 50% overlapping with the adjacent subband to utilize the transmission bandwidth more efficiently. In the proposed multicarrier system, each of the rate 1/M convolutionally-encoded symbols is also 1/R repetition coded and transmitted using overlapped multicarriers and we may obtain the coding gain and frequency diversity effect, simultaneously. We also analyze the possibility of reduction in total MUI by considering a raised-cosine wave-shaping filter having a roll-off factor (0< ${\beta}{\le}1$). It will be shown that the proposed system outperforms the multicarrier DS-CDMA system in $^{[3]}$.

  • PDF