• 제목/요약/키워드: Roll Forming Process

검색결과 165건 처리시간 0.021초

파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계 (Design of shearing process to reduce die roll in the curved shape part of fine blanking process)

  • 전용준
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.

Hydroforming 공정변수의 영향 (Effect of Process Parameters on Hydroforming)

  • 권재욱;명노훈;이경돈
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.615-623
    • /
    • 2000
  • The industrial application of hydroforming has a great potential in saying cost and achieving dimensional accuracy in automotive industry presently. The aim of the following article is to investigate the effect of process parameters on hydroformed part. Firstly, we have to investigate the change of mechanical properties for sheet and pipe material according to various radius/thickness ratio(r/t). The change of mechanical properties affects the yield stress more than the total elongation. Increase of yield stress for pipe has a bad influence on formability of hydroforming. Among the roll-forming process, the sizing process didn't change mechanical properties. The process parameters such as the initial pressure, mandrel shape and friction have seriously influenced on formability of hydroforming. Therefore we need to check formability of given material through the FE analysis in the beginning stage of process design and the predicted hydroforming process parameters ate generally a good starting point for the prototype tryout stage. The results of pretending, hydroforming analysis using FE model are good agreement with experimental results.

  • PDF

곡가공 프로세스를 고려한 곡판 분류 알고리즘 (An Algorithm of Curved Hull Plates Classification for the Curved Hull Plates Forming Process)

  • 노재규;신종계
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.675-687
    • /
    • 2009
  • In general, the forming process of the curved hull plates consists of sub tasks, such as roll bending, line heating, and triangle heating. In order to complement the automated curved hull forming system, it is necessary to develop an algorithm to classify the curved hull plates of a ship into standard shapes with respect to the techniques of forming task, such as the roll bending, the line heating, and the triangle heating. In this paper, the curved hull plates are classified by four standard shapes and the combination of them, or saddle, convex, flat, cylindrical shape, and the combination of them, that are related to the forming tasks necessary to form the shapes. In preprocessing, the Gaussian curvature and the mean curvature at the mid-point of a mesh of modeling surface by Coon's patch are calculated. Then the nearest neighbor method to classify the input plate type is applied. Tests to verify the developed algorithm with sample plates of a real ship data have been performed.

박판 내부구조재의 성형성 향상에 관한 연구 (A Study on the improvement of Formability of sheet metal inner structure)

  • 김형종;최두선;제태진;박재현;정동원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.423-427
    • /
    • 2005
  • Sandwich structures, which are composed of a thick core between two thin faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. Depending on the application of a particular sandwich structure, various types of cores can be used. The production of sandwich sheets by a rolling process, which is a more efficient and economical approach compared to other types of processes, has become an increasingly important subject of study. In this paper, we have studied the embossing structure of sheet type and developed embossing roll mold with $\Phi3$ pattern and roll forming system.

  • PDF

유동성형을 이용한 중공형 부품 제조공정 개발 (Development of Flow Forming Process for Hollow Shaped Parts from Seamless Steel Tube)

  • 권용남;김상우;김봉준;박은수;차달준
    • 소성∙가공
    • /
    • 제20권8호
    • /
    • pp.611-618
    • /
    • 2011
  • Flow forming is an incremental forming process in which rollers are used to form cylindrical parts with repeated turning of both roller and starting material. Both sheet and tube can be used as the starting material. The process is highly useful for producing hollow shaped parts from a tube, with the benefit of the average strain in the final shape being significantly lower than that from a sheet material. In the present study, the flow forming process was studied and optimized for producing a hollow shaped part from seamless steel tube by both experiment and numerical analysis. Upon considering the difficulty of forming seamless steel sheet, the thickness reduction was distributed over several tool paths. In the end, an optimum process condition was attained, and the experiment verified the simulation results.

Multi-Layer Perceptron과 Random Forest를 이용한 실린더 판재의 성형 조건 예측 (Application of Multi-Layer Perceptron and Random Forest Method for Cylinder Plate Forming)

  • 김성겸;황세윤;이장현
    • 대한조선학회논문집
    • /
    • 제57권5호
    • /
    • pp.297-304
    • /
    • 2020
  • In this study, the prediction method was reviewed to process a cylindrical plate forming using machine learning as a data-driven approach by roll bending equipment. The calculation of the forming variables was based on the analysis using the mechanical relationship between the material properties and the roll bending machine in the bending process. Then, by applying the finite element analysis method, the accuracy of the deformation prediction model was reviewed, and a large number data set was created to apply to machine learning using the finite element analysis model for deformation prediction. As a result of the application of the machine learning model, it was confirmed that the calculation is slightly higher than the linear regression method. Applicable results were confirmed through the machine learning method.

가변곡률을 가진 나선형 블레이드 제작을 위한 원추형 롤 성형 공정설계 (Process Design of Conical Roll-Shaping for Fabrication of Variable Curvature Spiral Blade)

  • 양성문;심도식;지호성;백준호;김봉식;안석영;박상후
    • 한국정밀공학회지
    • /
    • 제33권11호
    • /
    • pp.911-918
    • /
    • 2016
  • A conical roll-shaping process was proposed for fabrication of a metallic spiral blade applied to a small-scale wind turbine system. A spiral blade has continuously different curvatures, with a range of 100 to 350 mm radius. To fabricate this complex shape, we developed a conical roll-shaping process having two main conical rollers for feeding a blank sheet, and two cylindrical side rollers for control of local bending. For clear understanding of the process parameters, numerical analyses were conducted using a commercial code, Pam-Stamp. This study optimized the effects of process parameters, such as gap and angle between the main rollers and side rollers, and also the movement of side rollers. In order to increase the forming efficiency, a central rotation point was also calculated by the analytical approach. This developed rolling process can thus be utilized in a sheet metal forming process for obtaining spirally curved sheet metal shapes.

Gravure Offset 인쇄에 의한 미세 전극용 Ag Paste 개발 (Gravure Offset Printed on Fine Pattern by Developing Electrodes for the Ag Paste)

  • 이상윤;장아람;남수용
    • 한국인쇄학회지
    • /
    • 제30권3호
    • /
    • pp.45-56
    • /
    • 2012
  • Printing technology is accepted by appropriate technology that smart phones, tablet PC, display(LCD, OLED, etc.) precision recently in the electronics industry, the market grows, this process in the ongoing efforts to improve competitiveness through the development of innovative technologies. So printed electronics appeared by new concept. This technology development is applied on electronic components and circuits for the simplification of the production process and reduce processing costs. Low-temperature process making possible for widening, slimmer, lighter, and more flexible, plastic substrates, such as(flexible) easily by forming a thin film on a substrate has been studied. In the past, the formation of the electrode used a screen printing method. But the screen printing method is formation of fine patterns, high-speed printing, mass production is difficult. The roll-to-roll printing method as an alternative to screen printing to produce electronic devices by printing techniques that were used traditionally in the latest technology and processing techniques applied to precision control are very economical to implement fine-line printing equipment has been evaluated as. In order to function as electronic devices, especially the dozens of existing micro-level of non-dot print fine line printing is required, the line should not break at all, because according to the specifications required to fit the ink transfer conditions should be established. In this study of roll-to-roll printing conductive paste suitable for gravure offset printing by developing Ag paste for forming fine patterns to study the basic physical properties with the aim of this study were to.

평판형 전조압연의 성형특성 연구 (A Study on Forming Characteristics in Plate Type Cross Rolling Process)

  • 윤덕재;이근안;이낙규;최석우;이형욱
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.329-332
    • /
    • 2005
  • Cross rolling process is one of incremental forming processes to form an axi-symmetric shaped metal component. It can be classified into two types according to the shape of dies, which are a drum type (roll type) and a plate type (straight type). It can also be classified into a wedge type and a ramp type processes according to deformation characteristics of a material. The ramp type die is applied to plate type cross rolling process in cold forming process for forming of teeth of gear or bolt, while the wedge type die is generally utilized to drum type and plate type cross rolling processes in hot forming process. A shape of the ramp type die is usually same as final shape of a product at every section of a progressing direction, while the shape of the wedge type die has different shapes in a progressing direction. In this paper, a rolling of neck part in a ball stud component has been carried out using the plate type cross rolling process with a ramp shaped die. Forming characteristics have been performed using finite element analysis in order to obtain a proper preform for the ramp type plate cross rolling process.

  • PDF