• Title/Summary/Keyword: Roll/Roller

Search Result 82, Processing Time 0.033 seconds

Variable PID Gain Control of Winder Tension of Roll-to-Roll Printing System using Estimation of Winder-Roll Radius (롤투롤 시스템의 와인더 반경 추정을 이용한 와인더 장력의 가변 PID이득 제어)

  • Park, Jong-Chan;Jeon, Sung Woong;Nam, Ki Sang;Kim, Chung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.755-760
    • /
    • 2013
  • The dynamics of the winder roller of a roll-to-roll printing system for printed electronics is a time-varying system because of the variation of the winder roller radius owing to rewinding or unwinding of the web. Therefore, an adaptive control method considering the time-variant characteristics is required for precise tension control. In this study, the variable PID gain method is applied to the actual roll-to-roll system and verified by experiments for unwinder tension control. The required value of the winder roller radius for the application of the variable PID gain is estimated from the measurement of the winder tension and winder motor torque. The simulation results as well as experimental results show that the fixed PID gain control cannot stabilize the tension of the winder roller with varying winder roller radius. On the other hand, the variable PID gain method can control the tension of the winder roller regardless of the winder roller radius.

Analysis and Measurement of the Nip Pressure of Roll Cleaner (롤 크리너 선압의 해석 및 측정기술)

  • Choi Hyeon-Cheol;Lee Eung-Ki;Choi Jong-Guen
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1328-1334
    • /
    • 2006
  • In the rolling mills for sheet metal rolling, paper rolling and etc., the impurities of roller surface have crucial effects on the surface quality of the products obtained by rolling. The Roll Cleaner is a device to remove impurities on roller surface during a rolling operation. Nip Pressure means the line pressure interacted between the roll cleaner blade and the roller surface. The nip pressure is the most important parameter which decides the performance of roll cleaner, and it depends upon several factors including the cleaner design and its blade stiffness. This study, first, analyzes the mechanism of the nip pressure generation for a roll cleaner designed commercially, which is an crucial process for effective design of roll cleaners. Second, the technique for the measurement of nip pressure is developed, which is useful to verify the performance of roll cleaners and to setup them properly at factory floor.

Cantilever Type Idler Roller in Roll-to-roll Process for Printed Electronics (인쇄전자용 롤투롤 공정의 외팔보 형식 아이들 롤러)

  • Yoon, Deok-Kyun;Lee, Seung-Hyun;Kang, Jeong-Sik;Cho, Byung-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1153-1158
    • /
    • 2011
  • Roll-to-roll process is an emerging mass production method for printed and flexible electronics such as touch screen panel, RFID tag, thin film solar cell, and flexible display due to its high throughput. High precision in printing and coating is required to apply functional materials onto substrate. For such reason, every part of the roll-to-roll equipment needs to be precisely fabricated and to retain its precision under regular operation. In this article, the precision of cantilever type idler roller and a novel method to mitigate its deflection under web tension loading are discussed and the method is verified using both the numerical and the experimental works. The proposed method improves the structural rigidity of cantilever type roller whose advantages, such as low capital cost and high web path configurability, are maintained.

A Finite Element Heat Transfer Analysis with Coupling of Roll and Molten Metal in Direct Rolling Process (직접압연공정에 있어서 롤과 용탕을 연계한 유한요소 열전도해석)

  • 김영도;강충길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.946-957
    • /
    • 1994
  • In the steel industries, direct rolling process for production of strip from molten metal has been investigated to simplify processes, to minimize energy consumption, and to improve quality of the strip. In this study, two kinds of practicable scale cooling rollers are proposed. And heat transfer analysis of pool region and cooling roller considering flow of molten metal and roll rotation respectively using the finite element method are performed to obtain the proper initial condition and to observe cooling characteristics of cooling roller. From the results, variations of solidification final points and temperature distribution in roller are observed quantitatively according to roll rotation.

Research on the Airflow and Air Entrainment on Roll-to-Roll System (Roll to Roll 공정상의 유동장 계측 및 공기유입)

  • Kim, Sung-Kyun;Park, Joon-Hyung;Liem, Huynh Quang
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.39-44
    • /
    • 2008
  • The Roll-to-Roll system including continuous flexible thin materials and roller has its wide range of applications especially in the electronic printing industry. The industry is growing rapidly and the printing speed is also improving. However, the printing machine based on web and roller system has it own problem. As the web speed increases, the failure to maintain the contact may occur and the air entrain between the roller and the paper web may exist. Air bubbles may remain attached to electronic ink on the web causing defects on product surface. With the development of image processing technique, the airflow around the web and rolls can be visualized and calculated by PIV method. In our experiment, the simple web and rolls system is used to R2R simulator. The flow field is studied at various web speeds and positions. The result shows that the flow field has complicated structure with turbulent characteristic and the main trend of flow is obtained by taking time average of flow field.

Study on Failure in Outer Ring of Work Roll Bearing in Hot Rod Rolling Mill (열간 선재 압연기에서 작업롤 베어링의 외측링 파손에 관한 연구)

  • Byon, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.38-45
    • /
    • 2017
  • A finite element analysis-based approach which investigates the causes of the breakdown in the outer ring of the choke at hot rod rolling mill is presented. Two-dimensional drawings of the whole vertical-type mill stand are transformed into three-dimensional CAD models. Non-linear elasto-plastic deformation analysis of material at the roll gap is performed for computing roll force and torque of the work roll. Then, the reaction forces of the bearing rings together with a set of roller bearings that support the work roll are obtained by means of rigid body motion analysis. Finally, stress behaviors in the bearing rings together with a set of roller bearings that support the work roll are investigated by linear elastic analysis. Results reveal that stress at the contact area between the outer ring and roller bearing is extraordinary high when an internal gap between an external surface of the outer ring and the internal surface of the chock due to wear of the inside of the chock occurs.

The study on the thermal deformation of the rotating rollers in strip continuous casting process (박판 연속 주조과정에 있어서 회전 로울러의 열변형에 관한 연구)

  • 백남주;이상매
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.913-922
    • /
    • 1987
  • In this paper the solidification phenomena at the molten pool has been modeled and simulated in terms with the one dimensional unsteady-state heat transfer of the solid and molten phase and the pressure distribution in the solid phase for the twin-roller continuous casting of Sn-15% Pb. The further purpose of this study was to effectively analyze the thermal and mechanical deformation of roll applying the results of the heat transfer and the pressure distribution to the boundary conditions. The strip thickness of rapidly solidified metallic strip decreases with increasing angular velocity of the roller and with increasing initial roll gap. For this reason the roll spacing and angular velocity of the rolls are considered to be main variables. The recommended optimal casting regimes for continuous strip dimensions is near 0.8mm-1.0mm in thickness at the given angular velocity .omega.=2.0 rad/sec. Results of the experiment using Sn-15% Pb are compared with model predictions. The calculated roll deformation has been in good agreement with the observed value of roll deformatiion. All the deformation. All the deformation of the roller is within the elastic range, the plastic yielding are not occured. However, these elastic stresses are sufficient to take place of the shortened roller life by the thermal fatigue and a notch fatigue. The higher cooling rates were obtained by a twin-roller quenching technique. Also the quenched microstructure of the rapidly solidified shell was verified.

A Computational Analysis of Air Entrainment with a Nip Roller

  • Lee, Jae-Yong;Chang, Young-Bae;Shelton, John J.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2002.11a
    • /
    • pp.81-90
    • /
    • 2002
  • Air entrainment of a winding roll with a nip roller was studied numerically. The amount of air entrainment between two rotating rollers was obtained by solving lubrication equation, Reynolds equation, which neglect the existence of a web. However, the numerical model of this study included the web existence, therefore it considered the two lubricating air films between a winding roll and a web and also between a nip roller and the web. The pressure profiles and gap profiles of the two films were obtained by solving lubrication equation for the two air films and force balance equation of the web. Ballooning phenomenon was examined in terms of nip force, wrap angle, web stiffness, web speed, and web tension. This ballooning phenomenon caused by the back flow of the air film blocked by the nip roller. Air entrainment of the two numerical models was compared.

  • PDF

Design Optimization of Roller Straightening Process for Steel Cord using Response Surface Methodology (반응표면법을 이용한 스틸코드의 롤러교정기 설계 최적화)

  • Lee, Jong-Sup;Huh, Hoon;Lee, Jun-Wu;Bae, Jong-Gu;Kim, Deuk-Tae
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.238-241
    • /
    • 2007
  • A roller straightening process is a metal forming technique to improve the geometric quality of products such as straightness and flatness. The geometrical quality can be enhanced by eliminating unnecessary deformations produced during upstream manufacturing processes and minimizing any detrimental internal stress during the roller straightening process. The quality of steel cords can be achieved by the roller straightening depends the process parameters. Such process parameters are the roll intermesh, the roll pitch, the diameter of rolls, the number of rolls and the applied tension. This paper is concerned with the design optimization of the roller straightening process for steel cords with the aid of elasto-plastic finite element analysis. Effects of the process parameters on the straightness of the steel cord are investigated by the finite element analysis. Based on the analysis results, the optimization of the roller straightening process is performed by the response surface method. The roller straightening process using optimum design parameters is carried out in order to confirm the quality of the final products.

  • PDF