• Title/Summary/Keyword: Role Modeling

Search Result 1,456, Processing Time 0.036 seconds

Extraction and 3D Visualization of Trees in Urban Environment

  • Yamagishi, Yosuke;Guo, Tao;Yasuoka, Yoshifumi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1174-1176
    • /
    • 2003
  • Recently 3D city models are required for many applications such as urban microclimate, transportation navigation, landscape planning and visualization to name a few. The existing 3D city models mostly target on modeling buildings, but vegetation also plays an important role in the urban environment. To represent a more realistic urban environment through the 3D city model, in this research, an investigation is conducted to extract the position of trees from high resolution IKONOS imagery along with Airborne Laser Scanner data. Later, a tree growth model is introduced to simulate the growth of trees in the identified tree-positions.

  • PDF

Developement of dynamic modeling of rubber mount (고무 동특성 해석 기술 개발)

  • Lee, Shin-Bog;Jung, Jig-Han;Choi, Jae-Hwan;Lee, Young-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.87-91
    • /
    • 2013
  • Rubber Components have been playing important role for the isolation of noise and vibration of vehicle. This paper is presented the new method of dynamic modeling of rubber component for simulating the dynamic characteristics of it under the varing loading condition. Rubber dynamic model consists of the hyperelastic, viscoelastic and elasto-plastic characteristics of rubber. Dynamic proporties of rubber are calculated at each preload and frequency conditions, compared to test data, and evaluated the validity of rubber dynamic model. This technique is expected to understand and improve the characteristics of noise and vibration with relation to rubber components.

  • PDF

Artificial Neural Network Modeling for Photovoltaic Module Under Arbitrary Environmental Conditions (랜덤 환경조건 기반의 태양광 모듈 인공신경망 모델링)

  • Baek, Jihye;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.110-115
    • /
    • 2022
  • Accurate current-voltage modeling of solar cell systems plays an important role in power prediction. Solar cells have nonlinear characteristics that are sensitive to environmental conditions such as temperature and irradiance. In this paper, the output characteristics of photovoltaic module are accurately predicted by combining the artificial neural network and physical model. In order to estimate the performance of PV module under varying environments, the artificial neural network model is trained with randomly generated temperature and irradiance data. With the use of proposed model, the current-voltage and power-voltage characteristics under real environments can be predicted with high accuracy.

Improved Modeling of I-V Characteristic Based on Artificial Neural Network in Photovoltaic Systems (태양광 시스템의 인공신경망 기반 I-V 특성 모델링 향상)

  • Park, Jiwon;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.135-139
    • /
    • 2022
  • The current-voltage modeling plays an important role in characterizing photovoltaic systems. A solar cell has a nonlinear characteristic with various parameters influenced by the external environments such as the irradiance and the temperature. In order to accurately predict current-voltage characteristics at low irradiance, the artificial neural networks are applied to effectively quantify nonlinear behaviors. In this paper, a multi-layer perceptron scheme that can make accurate predictions is employed to learn complex formulas for large amounts of continuous data. The simulated results of artificial neural networks model show the accuracy improvement by using MATLAB/Simulink.

The Identification of Emerging Technologies of Automotive Semiconductor

  • Daekyeong Nam;Gyunghyun Choi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.663-677
    • /
    • 2023
  • As the paradigm of future vehicles changes, the interest in automotive semiconductor, which plays a key role in realizing this, is increasing. Automotive semiconductors are the technology with very high entry barriers that require a lot of effort and time because it must secure technology readiness level and also consider safety and reliability. In this technology field, it is very important to develop new businesses and create opportunities through technology trend analysis. However, systematic analysis and application of automotive semiconductor technology trends are currently lacking. In this paper, U.S. registered patent documents related to automotive semiconductor were collected and investigated based on the patent's IPC. The main technology of automotive semiconductor was analyzed through topic modeling, and the technology path such as emerging technology was investigated through cosine similarity. We identified that those emerging technologies such as driving control for vehicle and AI service appeared. We observed that as time passed, both convergence and independence of automotive semiconductor technology proceeded simultaneously.

Numerical Modeling of Circulation and Salinity Distribution in Seomjin River Estuary

  • Made Narayana Adibhusana;Yonguk Ryu;Taehwa Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.526-526
    • /
    • 2023
  • Water circulation plays a crucial role in regulating the salinity of estuaries, which is essential for the survival of estuarine organisms. Changes in freshwater inflows or sea level can have significant impacts on the distribution and abundance of species within these ecosystems. To better understand these dynamics, this paper presents a study of water circulation and salinity distribution in Seomjin River estuary using the Finite Volume Coastal Ocean Model (FVCOM) numerical model. An extreme scenario was simulated to assess the potential impact of tidal currents and river flow discharge on circulation and salinity distribution. The results of this study have important implications for managing estuarine ecosystems and conserving their associated biodiversity.

  • PDF

Improving streamflow and flood predictions through computational simulations, machine learning and uncertainty quantification

  • Venkatesh Merwade;Siddharth Saksena;Pin-ChingLi;TaoHuang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.29-29
    • /
    • 2023
  • To mitigate the damaging impacts of floods, accurate prediction of runoff, streamflow and flood inundation is needed. Conventional approach of simulating hydrology and hydraulics using loosely coupled models cannot capture the complex dynamics of surface and sub-surface processes. Additionally, the scarcity of data in ungauged basins and quality of data in gauged basins add uncertainty to model predictions, which need to be quantified. In this presentation, first the role of integrated modeling on creating accurate flood simulations and inundation maps will be presented with specific focus on urban environments. Next, the use of machine learning in producing streamflow predictions will be presented with specific focus on incorporating covariate shift and the application of theory guided machine learning. Finally, a framework to quantify the uncertainty in flood models using Hierarchical Bayesian Modeling Averaging will be presented. Overall, this presentation will highlight that creating accurate information on flood magnitude and extent requires innovation and advancement in different aspects related to hydrologic predictions.

  • PDF

Modeling the transverse connection of fully precast steel-UHPC lightweight composite bridge

  • Shuwen Deng;Zhiming Huang;Guangqing Xiao;Lian Shen
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.391-404
    • /
    • 2023
  • In this study, the modeling of the transverse connection of fully precast steel-UHPC (Ultra-High-Performance Concrete) lightweight composite bridges were conducted. The transverse connection between precast components plays a critical role in the overall performance and safety of the bridge. To achieve an accurate and reliable simulation of the interface behavior, the cohesive model in ABAQUS was employed, considering both bending-tension and compression-shear behaviors. The parameters of the cohesive model are obtained through interface bending and oblique shear tests on UHPC samples with different surface roughness. By validating the numerical simulation against actual joint tests, the effectiveness and accuracy of the proposed model in capturing the interface behavior of the fully precast steel-UHPC lightweight composite bridge were demonstrated.

Profession and strategy of BIM managers in Japan

  • Kaneta, Takashi
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.167-175
    • /
    • 2017
  • Building Information Modeling (BIM) comes to be implemented into architectural design, construction, and maintenance in Japan in order to convert design information thoughout a construction project. However, various problems are taking place in data transaction. It is not also clear about the role and the responsibility of the architects and the enginners in charge.There is a movement to establish a BIM manager as a general coordinator concerning BIM in Singapore and other countries, though it is not yet popular in Japan. This paper deals a BIM manager as a new profession in a construction project. The function and skills necessary to a BIM manager is analyzed, and the strategy of Japanese general contractors is discussed. General contractors from Japan are operating BIM in Singapore compatible with open system of supply chain. This style is different from the one in Japan even they belong to the same company. In this paper it is analyzed based on the survey in detail.

  • PDF

RISK ASSESSMENT USING BIM BASED SAFETY MANAGEMENT SYSTEM

  • Hongseob Ahn;Hyunjoo Kim;Wooyoung Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.107-110
    • /
    • 2011
  • The key role in safety management is to identify any possible hazard before it occurs by identifying any possible risk factors which are critical to risk assessment. This planning/assessment process is considered to be tedious and requires a lot of attention due to the following reasons: firstly, falsework (temporary structures) in construction projects is fundamentally important. However, the installation and dismantling of those facilities are one of the high risk activities in the job sites. Secondly, temporary facilities are generally not clearly delineated on the building drawings. It is our strong belief that safety tools have to be simple and convenient enough for the jobsite people to manage them easily and be flexible for any occasions to be occurred at various degrees. In order to develop the safety assessment system, this research utilizes the BIM technology and collects important information by importing data from BIM models and use it in the planning stage.

  • PDF