• Title/Summary/Keyword: Rokugo

Search Result 4, Processing Time 0.033 seconds

Irrigation Facility for Agricultural Use of Rokugo Alluvial Fan in Yokote Basin, Northeastern Japan (일본 동북지방 요코테 분지 내 로쿠고 선상지의 농업적 토지이용을 위한 관개시설 - 원통형 사이펀(siphon) 방식 분수공(分水工)을 대상으로-)

  • Kim Tae-Ho;Son Ill
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.507-512
    • /
    • 2006
  • This paper introduces an irrigation facility for agricultural use of Rokugo alluvial fan in Yokote Basin, northeastern Japan. A cylindrical distributor of agricultural water is able to supply water accurately to seven irrigated areas through its 180 orifices and one circular baffle, implying that people around fan areas has been tenacious of agricultural water. It has been recently reevaluated as tourism resources or symbolic landscape reflecting regional characteristics even though its functional value has decreased.

Crack Mitigation of Reinforced Concrete and Expansive SHCC Composite Slabs (콘크리트와 팽창형 SHCC 합성 슬래브의 균열제어 성능)

  • Yun, Hyun-Do;Lim, Sung-Chan;T., Iizuka;Y., Sakaguchi;K., Rokugo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.23-24
    • /
    • 2009
  • This paper explores the structural application of an expansive SHCC to improve the crack-damage properties of RC flexural members. The results of test on four simply supported slabs are described. The effect of the type of SHCC (Non-and expansive SHCC) and thickness of SHCC layer (10 and 20mm) on the ultimate flexural load, first crack load, crack width and spacing, and the load-deflection relationship of one-way slabs was investigated.

  • PDF

Mechanical Properties of Energy Efficient Concretes Made with Binary, Ternary, and Quaternary Cementitious Blends of Fly Ash, Blast Furnace Slag, and Silica Fume

  • Kim, Jeong-Eun;Park, Wan-Shin;Jang, Young-Il;Kim, Sun-Woo;Kim, Sun-Woong;Nam, Yi-Hyun;Kim, Do-Gyeum;Rokugo, Keitetsu
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.97-108
    • /
    • 2016
  • When the energy performance of concrete is substantially higher than that of normal type concrete, such concrete is regarded as energy efficient concrete (WBSCSD 2009). An experimental study was conducted to investigate mechanical properties of energy efficient concrete with binary, ternary and quaternary admixture at different curing ages. Slump test for workability and air content test were performed on fresh concretes. Compressive strength, splitting tensile strength were made on hardened concrete specimens. The mechanical properties of concrete were compared with predicted values by ACI 363R-84 Code, NZS 3101-95 Code, CSA A23.3-94 Code, CEB-FIP Model, EN 1991, EC 2-02, AIJ Code, JSCE Code, and KCI Code. The use of silica fume increased the compressive strengths, splitting tensile strengths, modulus of elasticities and Poisson's ratios. On the other hand, the compressive strength and splitting tensile strength decreased with increasing fly ash.

Influence of Cement Matrix's Compressive Strength and Replacement of Expansive Admixture on the Mechanical Properties of Synthetic Polyethylene (PE) Fiber-Reinforced Strain-Hardening Cement-Based Composites (SHCCs) (압축강도와 팽창재 대체에 따른 폴리에틸렌 합성섬유로 보강된 변형 경화형 시멘트 복합체의 역학적 특성)

  • Song, Young Jae;Yun, Hyun Do;Min, Byung Sung;Rokugo, Keitetsu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • In order to improve the dimensional stability and mechanical performance of cement-based composites, the effect of an expansive admixture based on calcium sulphoaluminate (CSA) on the shrinkage and mechanical properties of strain-hardening cement-based composite (SHCC), which exhibits multiple cracks and pseudo strain-hardening behavior in the direct tension, is investigated. Polyethylene fibers reinforced SHCC mixtures with three levels (30, 70, and 100MPa) of compressive strength were compared through free shrinkage, compressive strength, flexural strength, and direct tensile strength measurements. The SHCC mixtures were cast with and without replacing 10% of Portland cement content with CSA admixture. According to test results, CSA admixture is effective in reducing shrinkage of SHCC material. SHCC mixture with CSA admixture exhibited a little higher strength than companion mixture without CSA admixture.