• Title/Summary/Keyword: Rod worth

Search Result 40, Processing Time 0.033 seconds

Development of nodal diffusion code RAST-V for Vodo-Vodyanoi Energetichesky reactor analysis

  • Jang, Jaerim;Dzianisau, Siarhei;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3494-3515
    • /
    • 2022
  • This paper presents the development of a nodal diffusion code, RAST-V, and its verification and validation for VVER (vodo-vodyanoi energetichesky reactor) analysis. A VVER analytic solver has been implemented in an in-house nodal diffusion code, RAST-K. The new RAST-K version, RAST-V, uses the triangle-based polynomial expansion nodal method. The RAST-K code provides stand-alone and two-step computation modes for steady-state and transient calculations. An in-house lattice code (STREAM) with updated features for VVER analysis is also utilized in the two-step method for cross-section generation. To assess the calculation capability of the formulated analysis module, various verification and validation studies have been performed with Rostov-II, and X2 multicycles, Novovoronezh-4, and the Atomic Energy Research benchmarks. In comparing the multicycle operation, rod worth, and integrated temperature coefficients, RAST-V is found to agree with measurements with high accuracy which RMS differences of each cycle are within ±47 ppm in multicycle operations, and ±81 pcm of the rod worth of the X2 reactor. Transient calculations were also performed considering two different rod ejection scenarios. The accuracy of RAST-V was observed to be comparable to that of conventional nodal diffusion codes (DYN3D, BIPR8, and PARCS).

Dynamic rod worth measurement method based on eqilibrium-kinetics status

  • Lee, Eun-Ki;Jo, YuGwon;Lee, Hwan-Soo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.781-789
    • /
    • 2022
  • KHNP had licensed Dynamic Control rod Reactivity Measurement (DCRM) method using detector current signals of PWRs in 2006. The method has been applied to all PWRs in Korea for about 15 years successfully. However, the original method was inapplicable to PWRs using low-sensitivity integral fission chamber as ex-core detectors because of their pulse pile-up and the nonlinearity of the mean-square voltage at low power region. Therefore, to overcome this disadvantage, a modified method, DCRM-EK, was developed using kinetics behavior after equilibrium condition where the pulse counts maintain the maximum value before pulse pile-up. Overall measurement, analysis procedure, and related computer codes were changed slightly to reflect the site test condition. The new method was applied to a total of 15 control rods of 1000 MWe and 1400 MWe PWRs in Korea with worths in the range of 200 pcm -1200 pcm. The results show the average difference of -0.4% and the maximum difference of 7.1% compared to the design values. Therefore, the new DCRM-EK will be applied to PWRs using low sensitivity integral fission chambers, and also can replace the original DCRM when the evaluation fails by big noises present in current or voltage signals of uncompensated/compensated ion chambers.

Three dimensional analysis of temperature effect on control rod worth in TRR

  • Yari, Maedeh;Lashkari, Ahmad;Masoudi, S. Farhad;Hosseinipanah, Mirshahram
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1266-1276
    • /
    • 2018
  • In this paper, three-dimensional neutronic calculations were performed in order to calculate the dependency of CRW on the temperature of fuel and moderator and the moderator void. Calculations were performed using the known MTR_PC computer codes in the core configuration 61 of TRR. The dependency of CRW on the fuel temperature in the range of $20-340^{\circ}C$ and the moderator temperature of each control rods were studied. Based on the positions of the control rods, the calculations were performed in three different cases, named case A, B and C. By the results, the worth of each control rods increases by increasing of the coolant temperature in all methods, however, the total CRW is somewhat independent of the fuel temperature. In addition, the results showed that the variation of CRW versus density depends on the positions of the control rods and the most change in CRW in the coolant temperature, $20-100^{\circ}C$ (279 pcm), belongs to SR4. Finally the effect of void on CRW was studied for different void fraction in coolant. The most worth change is about $2 for 40% void fraction related to SR1 and SR3 in case B. For 40% void fraction, the total CRW increases about $7.5, $6 and $7 in cases, A, B and C, respectively.

Neutronics modelling of control rod compensation operation in small modular fast reactor using OpenMC

  • Guo, Hui;Peng, Xingjie;Wu, Yiwei;Jin, Xin;Feng, Kuaiyuan;Gu, Hanyang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.803-810
    • /
    • 2022
  • The small modular liquid-metal fast reactor (SMFR) is an important component of advanced nuclear systems. SMFRs exhibit relatively low breeding capability and constraint space for control rod installation. Consequently, control rods are deeply inserted at beginning and are withdrawn gradually to compensate for large burnup reactivity loss in a long lifetime. This paper is committed to investigating the impact of control rod compensation operation on core neutronics characteristics. This paper presents a whole core fine depletion model of long lifetime SMFR using OpenMC and the influence of depletion chains is verified. Three control rod position schemes to simulate the compensation process are compared. The results show that the fine simulation of the control rod compensation process impacts significantly the fuel burnup distribution and absorber consumption. A control rod equivalent position scheme proposed in this work is an optimal option in the trade-off between computation time and accuracy. The control position is crucial for accurate power distribution and void feedback coefficients in SMFRs. The results in this paper also show that the pin level power distribution is important due to the heterogeneous distribution in SMFRs. The fuel burnup distribution at the end of core life impacts the worth of control rods.

BEAVRS benchmark analyses by DeCART stand-alone calculations and comparison with DeCART/MATRA multi-physics coupling calculations

  • Park, Ho Jin;Kim, Seong Jin;Kwon, Hyuk;Cho, Jin Young
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1896-1906
    • /
    • 2020
  • The BEAVRS (Benchmark for Evaluation and Validation of Reactor Simulation) benchmark calculations were performed by DeCART stand-alone and DeCART/MATRA multi-physics coupled code system to verify their accuracy. The solutions of DeCART stand-alone calculations for the control rod bank worth, detector signal, isothermal temperature coefficient, and critical boron concentration agreed very well with the measurements. The root-mean-square errors of the boron letdown curves for two-cycles were less than about 20 ppm, while the individual and total control rod bank worth agreed well within 7.3% and 2.4%, respectively. For the BEAVRS benchmark calculations at the beginning of burnup, the difference between DeCART simplified thermal-hydraulic stand-alone and DeCART/MATRA coupled calculations were not significantly large. Therefore, it is concluded that both the DeCART stand-alone code and the DeCART/MATRA multi-physics coupled code system have the capabilities to generate high fidelity transport solutions at core follow calculations.

Analysis of the first core of the Indonesian multipurpose research reactor RSG-GAS using the Serpent Monte Carlo code and the ENDF/B-VIII.0 nuclear data library

  • Hartanto, Donny;Liem, Peng Hong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2725-2732
    • /
    • 2020
  • This paper presents the neutronics benchmark analysis of the first core of the Indonesian multipurpose research reactor RSG-GAS (Reaktor Serba Guna G.A. Siwabessy) calculated by the Serpent Monte Carlo code and the newly released ENDF/B-VIII.0 nuclear data library. RSG-GAS is a 30 MWth pool-type material testing research reactor loaded with plate-type low-enriched uranium fuel using light water as a coolant and moderator and beryllium as a reflector. Two groups of critical benchmark problems are derived on the basis of the criticality and control rod calibration experiments of the first core of RSG-GAS. The calculated results, such as the neutron effective multiplication factor (k) value and the control rod worth are compared with the experimental data. Moreover, additional calculated results, including the neutron spectra in the core, fission rate distribution, burnup calculation, sensitivity coefficients, and kinetics parameters of the first core will be compared with the previous nuclear data libraries (interlibrary comparison) such as ENDF/B-VII.1 and JENDL-4.0. The C/E values of ENDF/B-VIII.0 tend to be slightly higher compared with other nuclear data libraries. Furthermore, the neutron reaction cross-sections of 16O, 9Be, 235U, 238U, and S(𝛼,𝛽) of 1H in H2O from ENDF/B-VIII.0 have substantial updates; hence, the k sensitivities against these cross-section changes are relatively higher than other isotopes in RSG-GAS. Other important neutronics parameters such as kinetics parameters, control rod worth, and fission rate distribution are similar and consistent among the nuclear data libraries.

Temperature Coefficient of Reactioity (원자로의 반응도와 온도계수)

  • 노윤래
    • 전기의세계
    • /
    • v.15 no.5
    • /
    • pp.1-5
    • /
    • 1966
  • The stability and safety of operation of a reactor is determined mainly by the sign and magnitude of its reactivity responses to temperature changes. Reactors are subject to temperature fluctuations due to the changes in reactor power and ambient temperature. These temperature fluctuations cause reactivity disturbances through changes in the nuclear and physical properties of the core. Because of these important phenomena by the temperature effects, a large portion of study and testing on a reactor design has been conducted. In this experiment the overall temperature coefficient of the TRIGA MARK-II reactor is measured. The basic procedure is to change the tgemperature of the water moderator, and from the movements of a newly recalibrated control rod(this is necessary due to the effects of fuel burn-up and control rod depression) required to mintain criticality, the reactivity worth of the temperature change is determined. From this measurement, the overall temperature coefficient seems to be smoothly varying, almost a linear function of temperature, and a value of approximately -0.267${\c}$/$^{\circ}C$ can be obtained for an average temperature range from $17.6^{\circ}C$ to $32.5^{\circ}C$.

  • PDF