• Title/Summary/Keyword: Rod Shape

Search Result 353, Processing Time 0.039 seconds

Shape Design of an Outer Tie Rod, Considering Durability Criteria (내구 기준을 고려한 아우터 타이 로드의 형상 설계)

  • Kim, Jong-Kyu;Kwon, Young-Min;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.54-60
    • /
    • 2009
  • Weight reduction of automobile parts has been sought to achieve fuel efficiency and energy conservation. In this study, a shape design procedure is suggested to obtained the lightweight design of an outer tie rod. The developed aluminium Al6082M is selected as a steel-substitute material. Strength assesment and durability are the important design criterion in the structural design of an outer tie rod. This study considers strength and durability in the optimization process. In this study, the kriging interpolation method and trial and error method are adopted to obtain the minimum weight satisfying the strength and durability constraints.

  • PDF

Analysis of Worn Area Characteristic in the Fretting Wear of Nuclear Fuel Rod (핵연료 피복관 프레팅 마멸에서 나타난 마멸면 특성 분석)

  • Lee, Young-Ho;Kim, Hyung-Kyu;Jung, Youn-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.256-261
    • /
    • 2004
  • To evaluate the effect of spring shape on the fretting wear of nuclear fuel rod, sliding wear tests were performed using three kinds of space grid springs in room temperature air and water. With increasing slip amplitude, wear volume of each spring gradually increased. It is apparently shown that spring with convex shape had a relatively high wear resistance compared with concave shape springs. It is suggested that the ratio of the wear volume to the worn area can be suggested as an efficient and valid parameter to evaluate the wear resistibility of a fuel grid spring.

  • PDF

Prediction of Stress Free Surface Profile of Wrokpiece in Rod Rolling Process (선재압연공정의 소재 자유표면 형상예측)

  • Lee, Youngseog;Kim, Young-Ho;Jin, Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.174-180
    • /
    • 2000
  • A reliable analytic model that determines the cross sectional shape of a workpiece(material) in round-oval(or oval-round) pass sequence has been developed. the cross sectional shape of an outgoing workpiece is predicted by using the linear interpolation of the radius of curvature of an incoming workpiece and that of roll groove to the roll axis direction. The requirements we placed on the choice of the weighting function were to ensure boundary conditions specified. The validity of the analytic model has been examined by hot rod rolling experiment with the roll gap and specimen size changed. The cross sectional shape and area of a workpiece predicted by the proposed analytic model were good agreement with those obtained experimentally. It was found that the analytic model has not only simplicity and accuracy for practical usage but also save a large amount of computational time compared with finite element method.

  • PDF

Relationship between Spring Shapes and the Ratio of wear Volume to the Worn Area in Nuclear Fuel Fretting

  • Lee, Young-Ho;Kim, Hyung-Kyu;Jung, Youn-Ho
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • Sliding and impact/sliding wear test in room temperature air and water were performed to evaluate the effect of spring shapes on the wear mechanism of a fuel rod. The main focus was to quantitatively compare the wear behavior of a fuel rod with different support springs (i.e. two concaves, a convex and a flat shape) using a ratio of wear volume to worn area (De)-The results indicated that the wear volumes at each spring condition were varied with the change of test environment and loading type. However, the relationship between the wear volume and worn area was determined by only spring shape even though the wear tests were carried out at different test conditions. From the above results, the optimized spring shape which has more wear-resistant could be determined using the analysis results of the relation between the variation of De and worn surface observations in each test condition.

The utilities of U-shape EM sensor in stress monitoring

  • Wang, Guodun;Wang, Ming L.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.291-302
    • /
    • 2004
  • In this paper, load monitoring technologies using U-shape Magnetoelastic (EM or ME) sensors have been exploited systemically for the first time. The steel rod to be tested is the Japan 7 mm piano steel rod. The load dependence of the magnetic properties of the piano steel rod was manifested. Two experimental designs of U-shape magnetoelastic sensors were introduced, one with double pick-up concentric coils wound on the rod to be tested, the other with pick-up coil on one yoke foot. The former design is used to derive the correlation of the relative permeability with elastic tension, while the latter is aimed to reflect the stress induced magnetic flux variation along the magnetic circuit. Magnetostatic simulations provide interpretations for the yoke foot sensing technology. Tests with double pick-up coils indicate that under proper working points (primary voltages), the relative permeability varies linearly with the axial load for the Japan 7 mm piano steel rod. Tests with pick-up coil on the yoke foot show that the integrated sensing voltage changes quadratically with the load, and error is more acceptable when the working point is high enough.

Effects of the crystal rotation on heat transfer and fluid flow in the modified floating-zone crystal growth (수정된 부유띠결정성장법에서 결정봉의 회전이 유동 및 열전달에 미치는 효과)

  • Seo, Jeong-Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3322-3333
    • /
    • 1996
  • A numerical analysis has been conducted to investigate a modified floating-zone crystal growth process in which most of the melt surface is covered with a heated ring. The crystal rod is not only pulled downward but rotated around its axisymmetric line during crystal growth process in order to produce the flat interface of crystal growth and the single crystal growth of NaNO3 is considered in 6mm diameter. The present study is made from a full-equation-based analysis considering a pulling velocity in all of solid and liquid domains and both of solid-liquid interfaces are tracked simultaneously with a governing equation in each domain. Numerical results are mainly presented for the comparison of the surface shape of rotational crystal rod with that of no-rotational crystal rod and the effects of revolution speeds of the crystal rod. Results show that the rotation of crystal rod produces more its flat surface. In addition, the shape of crystal growth near the centerline is more concaved with the increase in the revolution speed of crystal rod. The flow pattern and temperature distribution is analyzed and presented in each case. As the pulling velocity of crystal rod is increasing, the free surface of the melt below the heated ring is enlarged due to the crystal interface migrating downward.

An Empirical Study on the Quality Reliability of the Split Shape of Long Control Rod for the Rotorcraft (회전익 항공기 장축 조종로드 분할 형상의 품질 신뢰성에 관한 실증적 연구)

  • Lim, HG;Kim, MT;Choi, JH;Kim, DH;Jang, MW;Yoon, JH
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.3
    • /
    • pp.365-377
    • /
    • 2017
  • Purpose: In the A rotorcraft, the division of a long yaw control rod was studied to improve the heat treatment capability. The purpose of this study was to analyze whether division of yaw control rod affects quality reliability in the A rotorcraft and analyze whether it secured flight safety. Methods: The structural static test and the vibration durability test on the split shape of yaw control rod were carried out in order to examine and verify the existing structural analysis results. Results: Structural static test results showed that there were no cracks and vibration durability test results showed that there was no damage or breakage on the split yaw control rod. Conclusion: This study showed that the quality reliability was confirmed and thus the flight safety of the A rotorcraft was secured. And it is expected that the split technique of the yaw control rod will contribute to the development of the rotorcraft industry in the future.

A Study on the Flow Characteristics according to the Shapes of Rod on Impinging Jet by PIV Measurement (충돌 Jet에서 Rod 형상에 따른 유동특성의 PIV 계측에 의한 연구)

  • 나우정;정진도;송민근;이상범;손승우;주은선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.152-161
    • /
    • 2004
  • The thermal load is a very important problem to be solved in many industrial systems including the electronic equipment. Impinging Jets have been known to provide a large heat transfer rates on surface for many years. The turbulence enhancement of fluid flow is requested for the efficiency elevation of heat transfer. A study on flow fields by rods attached to the wall surface as a promoter of turbulence enhancement has been carried out. The exact analysis on chracteristics of impinging jet field is requested to obtain the optimum design of the impinging jet system. By visualizing the flow field and processing the high digital image by computer PIV can afford exact data on the velocity vector kinetic energy and turbulence intensity in the complex turbulence field. In this study. three kinds of rod shape such as square. triangle. and semicircle are selected as the turbulence promoter. Nozzle diameters are 10mm. 17mm. and 23mm. And the analysis of the flow characteristics due to the above rods is carried out at Re No. 2.000, 3.000. and 4,000 by PIV measurement. It is clarified that the rod setup is very useful to obtain the turbulence enhancement and the turbulence intensity according to the shapes of rod appears large in order of the shapes of rod such as square 〉 triangle 〉semicircle.

An Experimental Study on the Flexural Behavior of Pre-loaded RC Beams Strengthened with CFRP-Rod (선하중(先荷重)을 받은 RC보의 CFRP-Rod 휨보강 효과에 대한 실험적 연구)

  • Ye, Sang-Min;Chun, Woo-Chul;Kang, Joo-Won;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.79-85
    • /
    • 2007
  • Steel plate bonding method with epoxy is common applied to repair and strengthen RC structures, but Steel is apt to corrode quickly, hard to manufacture and heavy. To overcome these defects, it is carried out research on strengthening RC structures with FRP(Fibre Reinforced Polyrner/Plastic) FRP is generally used in the shape of Plate or Sheet, but it has weak point such as premature failure, difficult work. To cope with these problem, NSMR(Near Surface Mounted Reinforcement) which uses CFRP in the shape of Rod is proposed and carried out active research on strengthening effect of variables such as quantity, anchorage length and space of CFRP-Rod. Strengthening with CFRP-Rod is carried out under loading to some degree in fact, and so the amount of pre-loading is selected as variable in this research. The amount of pre-loading is chosen in proportion to nominal strength of non-strengthened specimen with CFRP-Rod.

  • PDF