• Title/Summary/Keyword: Rockwell Hardness

Search Result 67, Processing Time 0.024 seconds

Effects of Cryogenic Temperature on Wear Behavior of 22MnB5 Under Cold Stamping (극저온이 22MnB5강의 냉간 스탬핑 마모에 미치는 영향)

  • Ji, Min-Ki;Noh, Yeonju;Kang, Hyun-Hak;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.241-246
    • /
    • 2022
  • This paper presents the effects of cryogenic temperature on the wear behavior of 22MnB5 blank under cold stamping. After immersing the blank in liquid nitrogen (LN2) for 10 min, a strip drawing test was performed within 10 s. The hardness was measured using the Rockwell hardness test, which increased from 165 HV at 20℃ to 192 HV at cryogenic temperature. The strip drawing test with 22MnB5 blank and SKD61 tool steel shows that for the different wear mechanisms on the tool surface with respect to temperature; adhesive wear is dominant at 20℃, but abrasive wear is the main mechanism at cryogenic temperature. As the friction test is repeated, sticking gradually increases on the tool surface at 20℃, whereas the scratch increases at cryogenic temperature. For the friction behavior, the friction coefficient rapidly increases when adhesive wear occurs, and it occurs more frequently at 20℃. The results for nanoindentation near the worn blank surface indicate a difference of 1.3 GPa at 20℃ and 0.8 GPa at cryogenic temperature compared to the existing hardness, indicating increased deformation by friction at 20℃. This occurs because thermally activated energy available to move the dislocation decreases with decreasing temperature.

Effect of tempering conditions on the tempering behavior and mechanical properties of tempered H13 steel (H13 강의 템퍼링 조건에 따른 템퍼링 거동 및 기계적 물성 효과 )

  • Gi-Hoon Kwon;Byoungho Choi;Yoon-Ho Son;Young-Kook Lee;Kyoungil Moon
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.105-114
    • /
    • 2024
  • Tempering behavior and mechanical properties in AISI H13 steel, quenched and tempered from 300 ℃ to 700 ℃ for different tempering time (1, 2, 5, 10, 20 hr) were quantitatively investigated by scanning electron microscopy (SEM), x-ray diffractometer (XRD), impact test machine, rockwell apparatus, ball-on-disk tester. Under the condition that the tempering time is 2 hours, the hardness increases slightly as the tempering temperature increases, but decreases rapidly when the tempering temperature exceeds 500 ℃, while the impact energy increases in proportion to the tempering temperature. Friction tests were conducted in dry condition with a load of 30 N, and the friction coefficient and wear rate according to tempering conditions were measured to prove the correlation with hardness and microstructure. In addition, primary tempering from 300 ℃ to 700 ℃ was performed at various times to establish a kinetic model to predict hardness under specific tempering conditions.

Effect of Copper Addition on Mechanical and Thermal Properties of SKD11 Stainless Steel (Cu 첨가에 따른 SKD11의 기계적, 열적 특성 변화)

  • Choi, Gwang Mook;Chae, Hong-Jun
    • Journal of Korea Foundry Society
    • /
    • v.39 no.6
    • /
    • pp.103-109
    • /
    • 2019
  • Cu-added SKD11 was manufactured through the casting process and the effects of Cu addition with different contents (0, 1, 2 and 3 wt%) and aging treatment on microstructure, mechanical characteristics such as tensile strength and hardness, and thermal conductivity were investigated. The microstructure was analyzed by FE-SEM and XRD, the mechanical characteristics by Rockwell hardness tester and Tensile tester, and the thermal conductivity by Laser flash. As a result, SKD11 containing Cu had higher hardness than as-received SKD11. The hardness of as-cast SKD11 containing 1 wt% Cu was 42.4 HRC, whereas the hardness of asreceived SKD11 cast alloy was 19.5 HRC, indicating that the hardness was greatly improved when Cu was added. In the case of tensile strength, Cu-added SKD11 cast alloy had lower tensile strength than as-received SKD11, and the tensile strength tended to increase as Cu content increased. After heat treatment, however, tensile strength of as-received SKD11 was significantly increased, whereas in the case of Cu-added SKD11, as the Cu contents increased, the tensile strength increased less and even reduced at 3 wt% Cu. The thermal conductivity of Cu-added SKD11 cast alloy was about 13 W m-1 K-1, which was lower than that of the asreceived SKD11 cast alloy (28 W m-1 K-1). After the heat treatment, however, the thermal conductivity of as-received SKD11 was reduced, while the thermal conductivity of the SKD11 added with Cu was increased. Thermal conductivity was generally larger with less Cu content, and this tendency became more pronounced after heat treatment.

Effects of Mill Annealing Temperature on the Microstructure and Hardness of Ti-6Al-4V Alloys (밀어닐링 온도가 Ti-6Al-4V 합금의 미세조직 및 경도에 미치는 영향)

  • Seo, Seong-ji;Kwon, Gi-hoon;Choi, Ho-joon;Lee, Gee-young;Jung, Min-su
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.6
    • /
    • pp.263-269
    • /
    • 2019
  • The mechanism of microstructure and hardness changes during mill annealing of Ti-6Al-4V alloy was investigated. The annealing heat treatments were performed at $675{\sim}795^{\circ}C$ in vacuum for 2 hours, followed by air cooling. The microstructure was observed by using an optical microscope and X-ray diffraction, and hardness was measured by using a Rockwell hardness tester and micro Vickers hardness tester. The average grain size becomes smaller at $675^{\circ}C$ to $735^{\circ}C$ due to the formation of new grains rather than grain growth, but becomes larger at $735^{\circ}C$ to $795^{\circ}C$ due to growth of the already-formed grains rather than formation of new grains. The mill annealing temperature becomes higher, the ${\beta}$ phase fraction decreases and ${\alpha}$ phase fraction increases at room temperature. This is because the higher annealing temperature, the smaller amount of V present in the ${\beta}$ phase, and thus the ${\beta}$ to ${\alpha}$ transformation occurs more easily when cooled to room temperature. As the mill annealing temperature increases, the hardness value tends to decrease, mainly due to resolution of defects such as dislocations from $675^{\circ}C$ to $735^{\circ}C$ and due to grain growth from $735^{\circ}C$ to $795^{\circ}C$, respectively.

Consolidation of Incineration Fly Ash by Solvothermal Reaction

  • Masuda, Kaoru;Endoh, Shigehisa
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.655-658
    • /
    • 2001
  • The generation of fly ash tends to increase yearly so that this is currently considered a big environmental concern, which requires appropriate treatment approaches. In this research the consolidation of incineration fly ash by the hot-press solvothermal reaction was investigated to provide an alternative process for the treatment and utilization of this waste material. Results showed that at reaction conditions of 52 K treatment, 20 ㎫ pressure and 60 minutes treatment time, the resulting consolidate exhibited a compressive ness strengths of 37-40 ㎫, a tensile strength of 6.5-7.0 ㎫ and a Rockwell hardness of 20-23 RH15W. These properties are comparable to the compressive ness strength of Portland cement which ranges from 30-40 ㎫ as well as with the tensile strengths of mortar, ganite, artificial lightweight aggregate and solidified high connote whose values are 2-2.5 ㎫, 5-9 ㎫, 5-10 ㎫ and 3-5 ㎫ respectively- Furthermore, by mixing fly ash with glass at 50% ratio and then subjecting to similar treatment conditions, a consolidate with even higher tensile strength of 12.5-13.3 ㎫ and hardness of 77-80 RH15W may be achieved.

  • PDF

A Study on Corrosion Resistance and Mechanical Properties of Ti-15Sn System Alloys for Medical Implants (생체용 Ti-15Sn계 합금의 내식성 및 기계적 성질에 관한 연구)

  • Lee, Doh-Jae;Kim, Dae-Hwan;Park, Hyo-Byeong;Lee, Kyung-Ku
    • Journal of Korea Foundry Society
    • /
    • v.20 no.3
    • /
    • pp.208-215
    • /
    • 2000
  • The mechanical properties and corrosion resistance of Ti alloys for medical implants have been investigated. Ti, Ti-15Sn-4Nb and Ti-15Sn-4Nb-2Zr alloys were melted in arc furnace and the corrosion resistance of Ti alloys was evaluated by anodic polarization test. The microstructure and mechanical properties of Ti alloys were analysed by optical microscope, hardness and tensile tester. The tensile strength of the pure-Ti improved by addition of Sn and Nb and Ti-15Sn-4Nb alloy showed better Rockwell hardness compared with pure Ti. However, there was no significant difference in corrosion resistance between thoseTi-alloys made of Pure-Ti and Ti-15Sn-4Nb alloy. The passive films on the Ti-15Sn-4Nb alloy in air atmosphere consisted of $TiO_2$, SnO and NbO as demonstrated by X-ray photoelectron spectroscopy(XPS)

  • PDF

Microstructure and Tribological Properties of Ti-Si-C-N Nanocomposite Coatings Prepared by Filtered Vacuum Arc Cathode Deposition

  • Elangovan, T.;Kim, Do-Geun;Lee, Seung-Hun;Kim, Jong-Kuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.54-54
    • /
    • 2011
  • The demand for low-friction, wear and corrosion resistant components, which operate under severe conditions, has directed attentions to advanced surface engineering technologies. The Filtered Vacuum Arc Cathode Deposition (FVACD) process has demonstrated atomically smooth surface at relatively high deposition rates over large surface areas. Preparation of Ti-Si-C-N nanocomposite coatings on (100) Si and stainless steel substrates with tetramethylsilane (TMS) gas pressures to optimize the film preparation conditions. Ti-S-C-N coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, nanoindentation, Rockwell C indentation and ball-on-disk wear tests. The XRD results have confirmed phase formation information of TiSiCN coatings, which shows mixing of TiN and TiC structure, corresponding to (111), (200) and (220) planes of TiCN. The chemical composition of the film was investigated by XPS core level spectra. The binding energy of the elements present in the films was estimated using XPS measurements and it shows present of elemental information corresponding to Ti2p, N1s, Si 2p and C1. Film hardness and elastic modulus were measured with a nano-indenter, and film hardness reached 40 GPa. Tribological behaviors of the films were evaluated using a ball-on-disk tribometer, and the films demonstrated properties of low-friction and good wear resistance.

  • PDF

Application of ta-C Coating on WC Mold to Molded Glass Lens

  • Lee, Woo-Young;Choi, Ju-hyun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.106-113
    • /
    • 2019
  • We investigated the application of tetrahedral amorphous carbon (ta-C) coatings to fabricate a glass lens manufactured using a glass molding process (GMP). In this work, ta-C coatings with different thickness (50, 100, 150 and 200 nm) were deposited on a tungsten carbide (WC-Co) mold using the X-bend filter of a filtered cathode vacuum arc. The effects of thickness on mechanical and tribological properties of the coating were studied. These ta-C coatings were characterized by atomic force microscopy, scanning electron microscopy, nano-indentation measurements, Raman spectrometry, Rockwell-C tests, scratch tests and ball on disc tribometer tests. The nano-indentation measurements showed that hardness increased with an increase in coating thickness. In addition, the G-peak position in the Raman spectra analysis was right shifted from 1520 to $1586cm^{-1}$, indicating that the $sp^3$ content increased with increasing thickness of ta-C coatings. The scratch test showed that, compared to other coatings, the 100-nm-thick ta-C coating displayed excellent adhesion strength without delamination. The friction test was carried out in a nitrogen environment using a ball-on-disk tribometer. The 100-nm-thick ta-C coating showed a low friction coefficient of 0.078. When this coating was applied to a GMP, the life time, i.e., shot counts, dramatically increased up to 2,500 counts, in comparison with Ir-Re coating.

A study on microstructure, corrosion characteries and hardness of pure Ti according to cooling methods (생체용 순수 Ti 주조체의 냉각방법에 따른 주조조직과 부식특성 및 경도에 관한 연구)

  • Kim, Jae-Doo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.65-73
    • /
    • 2001
  • The purpose of this study was to investigate the microstucture and hardness, corrosion of pure Ti alloy, which is widely used as partial denture frame work these days, depending on the cooling method, followed by casting. The first group was bench cooling at room temperature($18^{\circ}C$), the second group was slowly cooled in the furnace from $700^{\circ}C$ to room temperature, and third. rapidly cooled in $0^{\circ}C$ water. The microstructure of each specimen observed by means of photomicrograph taken by electron microscope, in add to the physical characteristics of each specimen were obtained using the rockwell Hardnest Number. the characteristics of corrosion. The results were obtained as follows: 1. From Potentiodynamic plot. we conclude furnace-cooled specimen had the best stabiltity of passive film and that air-cooled specimen showed similar characteristics. The density of electric current of quenched specimen was the highest, which formed kind of unstable passive film. 2. Specimen cooled at room temperature (air cooling) had the highest value of hardness of 81.26HRB, specimen cooled at ice-water, $0^{\circ}C$, had the value of 78.42HRB, and specimen furnace-cooled at $700^{\circ}C$ had lowest value of 77.1HRB. 3. Quenching treated micro-structure formed martensite structure by and large. In case of air cooling, we could see $\alpha$-structure widmanstatten formed overall. In furnace cooling, widmanstatten structure and various shape $\alpha$-structures forming colony with direction were detected.

  • PDF

Strength Change due to Plastic Deformation in Al 2024 Ultrafine Grained ECAP Metal (ECAP 성형가공한 Al 2024 초미세결정립 재료의 소성변형량에 따른 강도 변화)

  • Choi, Jeong-Woo;Ma, Young-Wha;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1407-1415
    • /
    • 2005
  • Strength change of an over-aged A12024 material was studied after being subjected to stages of severe plastic deformation by ECAP (Equal Channel Angular Pressing). Various kinds of strength value were measured using the conventional tensile test, Rockwell and Vickers hardness and the SP (small punch) test Due to limitation of the specimen size, tension test in transverse direction could not be conducted. Hence, SP test was employed for assessing the strength in transverse direction. Based on TEM observation the measured strength characteristics were explained based on the relation between microstructure, dislocation and strength. As the number of ECAP pass increases, the strength of A12024 was also increased. However, considerable change of strength, which is generally predicted, was not observed in this study. For the strength in transverse direction even decrease of the strength was observed after 6 passes of ECAP. It was argued that this decrease was due to dynamic recovery of dislocation density during or after ECAP processes at $150^{\circ}C$. The strength assessment equation proposed by the authors in the previous paper was shown to be very accurate. This argument was supported by comparing the results of conventional tensile test with those of SP test. It was also pointed that the Rockwell har(3ness value seemed to be able to represent the strength in the transverse direction.