• Title/Summary/Keyword: Rockwell

Search Result 83, Processing Time 0.029 seconds

Effect of Induction Heat Bending Process on the Properties of ASME SA106 Gr. C Carbon Steel Pipes

  • Kim, Ki Tae;Kim, Young Sik;Chang, Hyun Young;Oh, Young Jin;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • Recently, the bending process is greatly applied to fabricate the pipe line. Bending process can reduce welding joints and then decrease the number of inspection. Thus, the maintenance cost will be reduced. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. By this thermal process, corrosion properties and microstructure can be affected. This work focused on the effect of induction heating bending process on the properties of ASME SA106 Gr. C low carbon steel pipes. Microstructure analysis, hardness measurements, and immersion corrosion test were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. Hardness was measured using a Rockwell B scale. Induction heat bending process has influenced upon the size and distribution of ferrite and pearlite phases which were transformed into finer structure than those of base metal. Even though the fine microstructure, every bent area showed a little lower hardness than that of base metal. It is considered that softening by the bending process may be arisen. Except of I2, intrados area, the others showed a similar corrosion rate to that of base metal. But even relatively high rate of intrados area was very low and acceptable. Therefore, it is judged that induction heat bending process didn't affect boric acid corrosion behaviour of carbon steel.

Effect of Bentonite on the Mechanical Properties of ABS Resin (Bentonite가 ABS 수지의 기계적 물성에 미치는 영향)

  • Don, Yoon-Seung;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.981-989
    • /
    • 1994
  • For the development of new material used bentonite in ceramic/organic material composite, ABS(acrylonitrile-butadiene-styrene) material was used as a matrix polymer and a series of bentonite was blended together. This bentonite, filler like talc or mica for plastic material, was used since natural bentonite(Ca type) is easily obtainable in Korea, Na-bentonite changed from natural bentonite by $Na_2CO_3$ based on the specified compositions, changes in the static and dynamic mechanical properties. It was discovered that the increased content of natural and Na- bentonite results in higher modulus with reduced impact strength. And Rockwell hardness was constant. And Na- bentonite filled polymer showed improvement in impact strength and lower in modulus as the natural bentonite filled polymer. The storage modulus(E') of Na- bentonite filled ABS resin was higher than that of Ca- bentonite filled ABS resin, while higher temperature, storage modulus(E') decreased. At higher frequency, tan ${\delta}$ peak was shifted at high temperature.

  • PDF

Fabrication of Titanium alloy by Electromagnetic Continuous Casting (EMCC) Method for Medical Applications (전자기 연속 주조법을 이용한 의료용 타이타늄 합금 제작에 관한 연구)

  • Choi, Su-Ji;Lee, Hyun-Jae;Baek, Su-Hyun;Hyun, Soong-Keun;Jung, Hyun-Do;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.38 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Electromagnetic continuous casting (EMCC) was used to fabricate Ti-6Al-4V alloys with properties suitable for medical applications. Ti-6Al-4V alloy ingots fabricated by EMCC were subjected to heat treatment, such as residual stress removing (RRS), furnace cooling after solution treatment (ST-FC) and water-cooling after solution treatment (ST-WC), in order to obtain characteristics suitable for the standard. After component analysis, the microstructure and mechanical properties (tensile strength and elongation) were evaluated by ICP, gas analysis, OM, SEM, a Rockwell hardness tester and universal testing machine. The Ti-6Al-4V alloy ingot fabricated by EMCC was fabricated without segregation, and the lamellar structure was observed in the RRS and ST-FC specimens. The ST-WC specimen showed only martensite structure. As a result of evaluating the mechanical properties based on the microstructure results, we found that the water-cooled heat treatment condition after the solution treatment was most suitable for the Ti-6Al-4V ELI standard.

Effect of Copper Addition on Mechanical and Thermal Properties of SKD11 Stainless Steel (Cu 첨가에 따른 SKD11의 기계적, 열적 특성 변화)

  • Choi, Gwang Mook;Chae, Hong-Jun
    • Journal of Korea Foundry Society
    • /
    • v.39 no.6
    • /
    • pp.103-109
    • /
    • 2019
  • Cu-added SKD11 was manufactured through the casting process and the effects of Cu addition with different contents (0, 1, 2 and 3 wt%) and aging treatment on microstructure, mechanical characteristics such as tensile strength and hardness, and thermal conductivity were investigated. The microstructure was analyzed by FE-SEM and XRD, the mechanical characteristics by Rockwell hardness tester and Tensile tester, and the thermal conductivity by Laser flash. As a result, SKD11 containing Cu had higher hardness than as-received SKD11. The hardness of as-cast SKD11 containing 1 wt% Cu was 42.4 HRC, whereas the hardness of asreceived SKD11 cast alloy was 19.5 HRC, indicating that the hardness was greatly improved when Cu was added. In the case of tensile strength, Cu-added SKD11 cast alloy had lower tensile strength than as-received SKD11, and the tensile strength tended to increase as Cu content increased. After heat treatment, however, tensile strength of as-received SKD11 was significantly increased, whereas in the case of Cu-added SKD11, as the Cu contents increased, the tensile strength increased less and even reduced at 3 wt% Cu. The thermal conductivity of Cu-added SKD11 cast alloy was about 13 W m-1 K-1, which was lower than that of the asreceived SKD11 cast alloy (28 W m-1 K-1). After the heat treatment, however, the thermal conductivity of as-received SKD11 was reduced, while the thermal conductivity of the SKD11 added with Cu was increased. Thermal conductivity was generally larger with less Cu content, and this tendency became more pronounced after heat treatment.

Microstructure Characterization of Nb-Si-B alloys Prepared by Spark Plasma Sintering Process (방전 플라즈마 소결(Spark Plasma Sintering) 방법에 의해 제조된 Nb-Si-B계 합금의 미세조직 특성)

  • Kim, Sang-Hwan;Kim, Nam-Woo;Jeong, Young-Keun;Oh, Sung-Tag;Kim, Young Do;Lee, Seong;Suk, Myung Jin
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.426-431
    • /
    • 2015
  • Microstructural examination of the Nb-Si-B alloys at Nb-rich compositions is performed. The Nb-rich corner of the Nb-Si-B system is favorable in that the constituent phases are Nb (ductile and tough phase with high melting temperature) and $T_2$ phase (very hard intermetallic compound with favorable oxidation resistance) which are good combination for high temperature structural materials. The samples containing compositions near Nb-rich corner of the Nb-Si-B ternary system are prepared by spark plasma sintering (SPS) process using $T_2$ and Nb powders. $T_2$ bulk phase is made in arc furnace by melting the Nb slug and the Si-B powder compact. The $T_2$ bulk phase was subsequently ball-milled to powders. SPS is performed at $1300^{\circ}C$ and $1400^{\circ}C$, depending on the composition, under 30 MPa for 600s, to produce disc-shaped specimen with 15 mm in diameter and 3 mm high. Hardness tests (Rockwell A-scale and micro Vickers) are carried out to estimate the mechanical property.

Variation of Microstructure and Property of the Electro-slag Remelted M2 Steel with Heat Treatment Conditions (ESR한 M2강의 열처리에 따른 미세조직 및 물성 변화)

  • Lee, Ki-Jong;Kim, Moon-Hyun;Lee, Jeong-Keun;Joo, Dae-Heon;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.281-287
    • /
    • 2002
  • In order to investigate the variation of microstructure and property of the Electro-slag Remelted M2 steel, microstructure observation, hardness, and bending test were performed by using optical microscope. SEM/EDS, rockwell hardness tester, charpy impact tester and bending tester, respectively. It was revealed that the number of inclusions and content of gas elements(S, O, N) in M2 steel fabricated by ESR process decreased markedly compared to those of AIM. It seems to be due to refining effect of ESR process. The volume fraction of carbides in quenched and tempered specimens after austenitizing at 1150$^{\circ}C$ and 1240$^{\circ}C$ was measured. The volume fraction of grain boundary carbides were found to be similar for both specimens. However, The volume fraction of carbides in grain decreased with an increase of austenitizing temperature. When specimen was austenitized at 1150$^{\circ}C$, grain boundary carbides showed needle like morphology. But, the carbides were broken with an increase of austenitizing temperature. The specimen austenitized at 1240$^{\circ}C$ showed higher hardness and lower bending strength compared to that of 1150$^{\circ}C$. As expected, toughness increased with sub-zero quenching treatment.

금속중간층을 이용한 나노결정질 다이아몬드 박막 코팅

  • Na, Bong-Gwon;Myeong, Jae-U;Gang, Chan-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.99-99
    • /
    • 2013
  • 나노결정질 다이아몬드(Nanocrystalline Diamond: NCD) 박막은 고경도와 낮은 마찰계수를 가지고 있어 초경합금이나 고속도강과 같은 절삭공구 위에 코팅하여 공구의 성능 향상을 도모하려는 노력이 있어 왔다. 그러나 NCD 박막의 잔류응력이 크고, 초경합금과 철계 금속에 NCD가 증착되지 않는다는 문제점이 있다. 따라서 잔류응력 완화와 다이아몬드 핵생성을 위하여 제3의 중간층 재료가 필요하다. 본 연구에서는 W과 Ti을 중간층으로 하여 초경합금(WC-Co)과 고속도강(SKH51)에 NCD 박막을 코팅하고 기계적 특성을 비교하였다. 초경합금 또는 고속도강기판 위에 W 또는 Ti 중간층을 DC magnetron sputter를 이용해 각 1 ${\mu}m$의 두께로 증착하고 그 위에 MPCVD (Microwave Plasma Chemical Vapor Deposition)를 이용해 NCD 박막을 2${\mu}m$의 두께로 코팅하였다. FESEM을 이용하여 표면과 단면의 형상을 관찰하였고, XRD와 Raman spectroscopy를 통해 NCD 박막의 결정성을 확인하였다. 그리고 tribology test를 실시하여 코팅된 박막의 내마모성을 비교하였으며, Rockwell C indentation test를 이용하여 밀착력을 비교하였다. 초경합금에 적용 시, W이 Ti보다 중간층으로서 더 우수한 것으로 나타났으며 이는 열팽창계수 차이에 의한 잔류응력의 차이에 의한 것으로 여겨진다. 중간층 두께에 따른 박막의 기계적 특성 변화를 알아보기 위해 W 중간층의 두께를 1, 2, 4 ${\mu}m$로 변화를 주었다. 중간층 두께가 2 ${\mu}m$ 이상일 때 박막의 밀착력이 증가되는 것으로 나타났다. 고속도강 위에 같은 방법으로 1 ${\mu}m$의 W 또는 Ti 중간층 위에 2 ${\mu}m$의 NCD 박막을 코팅한 시편들은 초경합금에 코팅한 것과 달리 두 시편 모두 낮은 밀착력을 나타내었다. 열팽창계수 차이에 의한 잔류응력을 완화하기 위해 고속도강에 W/Ti 복합박막을 중간층으로 Ti, W순으로 각각 1 ${\mu}m$ 두께로 증착 후 그 위에 NCD 박막을 2 ${\mu}m$ 두께로 코팅 한 후 특성을 비교하였다. Ti/W 복합 중간층 위에 코팅된 NCD 박막의 밀착력이 W 혹은 Ti 단일 중간층에 코팅된 박막에 비해 우수한 것으로 나타났다. 그러나 실제 공구에 적용하기에는 박막의 밀착력 개선이 요구되며 이를 위해서 더 연구가 필요하다.

  • PDF

Nanocrystalline Diamond Coating on Steel with SiC Interlayer (철강 위에 SiC 중간층을 사용한 나노결정질 다이아몬드 코팅)

  • Myung, Jae-Woo;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.2
    • /
    • pp.75-80
    • /
    • 2014
  • Nanocrystalline diamond(NCD) films on steel(SKH51) has been investigated using SiC interlayer film. SiC was deposited on SKH51 or Si wafer by RF magnetron sputter. NCD was deposited on SiC at $600^{\circ}C$ for 0.5~4 h employing microwave plasma CVD. Film morphology was observed by FESEM and FIB. Film adherence was examined by Rockwell C adhesion test. The growth rate of NCD on SiC/Si substrate was much higher than that on SiC/SKH51. During particle coalescence, NCD growth rate was slow since overall rate was determined by the diffusion of carbon on SiC surface. After completion of particle coalescence, NCD growth became faster with the reaction of carbon on NCD film controlling the whole process. In the case of SiC/SKH51 substrate, a complete NCD film was not formed even after 4 h of deposition. The adhesion test of NCD/SiC/SKH51 samples revealed a delamination of film whereas that of SiC/SKH51 showed a good adhesion. Many voids of less than 0.1 ${\mu}m$ were detected on NCD/SiC interface. These voids were believed as the reason for the poor adhesion between NCD and SiC films. The origin of voids was due to the insufficient coalescence of diamond particles on SiC surface in the early stage of deposition.

A study on microstructure, corrosion characteries and hardness of pure Ti according to cooling methods (생체용 순수 Ti 주조체의 냉각방법에 따른 주조조직과 부식특성 및 경도에 관한 연구)

  • Kim, Jae-Doo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.65-73
    • /
    • 2001
  • The purpose of this study was to investigate the microstucture and hardness, corrosion of pure Ti alloy, which is widely used as partial denture frame work these days, depending on the cooling method, followed by casting. The first group was bench cooling at room temperature($18^{\circ}C$), the second group was slowly cooled in the furnace from $700^{\circ}C$ to room temperature, and third. rapidly cooled in $0^{\circ}C$ water. The microstructure of each specimen observed by means of photomicrograph taken by electron microscope, in add to the physical characteristics of each specimen were obtained using the rockwell Hardnest Number. the characteristics of corrosion. The results were obtained as follows: 1. From Potentiodynamic plot. we conclude furnace-cooled specimen had the best stabiltity of passive film and that air-cooled specimen showed similar characteristics. The density of electric current of quenched specimen was the highest, which formed kind of unstable passive film. 2. Specimen cooled at room temperature (air cooling) had the highest value of hardness of 81.26HRB, specimen cooled at ice-water, $0^{\circ}C$, had the value of 78.42HRB, and specimen furnace-cooled at $700^{\circ}C$ had lowest value of 77.1HRB. 3. Quenching treated micro-structure formed martensite structure by and large. In case of air cooling, we could see $\alpha$-structure widmanstatten formed overall. In furnace cooling, widmanstatten structure and various shape $\alpha$-structures forming colony with direction were detected.

  • PDF

Effects of Mill Annealing Temperature on the Microstructure and Hardness of Ti-6Al-4V Alloys (밀어닐링 온도가 Ti-6Al-4V 합금의 미세조직 및 경도에 미치는 영향)

  • Seo, Seong-ji;Kwon, Gi-hoon;Choi, Ho-joon;Lee, Gee-young;Jung, Min-su
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.6
    • /
    • pp.263-269
    • /
    • 2019
  • The mechanism of microstructure and hardness changes during mill annealing of Ti-6Al-4V alloy was investigated. The annealing heat treatments were performed at $675{\sim}795^{\circ}C$ in vacuum for 2 hours, followed by air cooling. The microstructure was observed by using an optical microscope and X-ray diffraction, and hardness was measured by using a Rockwell hardness tester and micro Vickers hardness tester. The average grain size becomes smaller at $675^{\circ}C$ to $735^{\circ}C$ due to the formation of new grains rather than grain growth, but becomes larger at $735^{\circ}C$ to $795^{\circ}C$ due to growth of the already-formed grains rather than formation of new grains. The mill annealing temperature becomes higher, the ${\beta}$ phase fraction decreases and ${\alpha}$ phase fraction increases at room temperature. This is because the higher annealing temperature, the smaller amount of V present in the ${\beta}$ phase, and thus the ${\beta}$ to ${\alpha}$ transformation occurs more easily when cooled to room temperature. As the mill annealing temperature increases, the hardness value tends to decrease, mainly due to resolution of defects such as dislocations from $675^{\circ}C$ to $735^{\circ}C$ and due to grain growth from $735^{\circ}C$ to $795^{\circ}C$, respectively.