• Title/Summary/Keyword: Rocket nozzle

Search Result 336, Processing Time 0.031 seconds

Modular Program for Conceptual Design of Liquid Rocket Engine System, Part I : Essential Components Design (액체 로켓 엔진시스템 개념설계를 위한 모듈화 프로그램 Part I : 주요 구성품 설계)

  • Yang, Hee-Sung;Park, Byung-Hoon;Yoon, Woong-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.805-815
    • /
    • 2007
  • In order to build a conceptual design program for a liquid rocket engine system, performance based sub-programs for each core component of the engine system were made. Parts included were the combustion chamber, supersonic nozzle, centrifugal pump, and impulsive turbine. Simple mathematical models based on classical thermodynamic and inviscid theories were adopted with proper tuning by empirical data. In Part I, aiming to validate each sub-program, we examined the results of each program qualitatively, and parametrically investigated the sensitivity due to the change in design parameters.

Gain Scheduling Controller Design and Performance Evaluation for Thrust Control of Variable Thrust Solid Rocket Motor (가변 추력 고체추진기관의 추력 제어를 위한 이득 계획 제어기 설계 및 성능 분석)

  • Hong, SeokHyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.28-36
    • /
    • 2016
  • Theoretical model of a variable thrust solid rocket motor with a pintle nozzle was derived. For the chamber pressure control, classical model linearization and proportional-intergral controller was used. And then two types of gain scheduling controller were suggested to imporve controller performance for the non-linear propulsion model. Considering characteristics of systems, control gains were scheduled by chamber pressure or free volume. Step responses of each controllers were compared. As a result, the proper control algorithm about characteristics of variable thrust rocket motor was suggested.

A Trade-off Analysis between Combustion and Cooling Performance of a Liquid Rocket Combustor with Fuel Film Cooling Scheme (연료 막냉각을 적용한 액체로켓 연소기의 연소/냉각 성능 간 Trade-off 해석)

  • Joh, Miok;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.16-22
    • /
    • 2012
  • Performance of a liquid rocket thrust chamber with regenerative cooling scheme has been numerically analyzed using in-house CFD code which can predict combustion/cooling performance and provide nozzle design parameters. This paper investigates trade-offs between combustion and cooling performance with varying amount of fuel directly injected into the chamber wall to form cooling films and mixture ratios for the peripheral injectors. Further efforts to verify/improve the simulation methodology including comparison with the firing test results are planned to make it a reliable tool to optimize the film cooling and other major design parameters.

Spray Characteristics of the Rocket Oxidizer-rich Preburner Injection System

  • Yang, Joon-Ho;Choi, Seong-Man;Han, Young-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.255-259
    • /
    • 2008
  • This paper presents the spray characteristics of the oxidizer rich preburner injector which can be used in the high-thrust rocket system. We designed the basic shape of the liquid-liquid coaxial swirl injector for the rocket oxidizer rich preburner injection system. To understand the spray angle variation with the high pressure environment, the spray visualization in the high pressure chamber was preformed. Also we measured the droplet velocity, the Sauter Mean Diameter(SMD), the volume flux and the number density with the PDPA system by using water in atmospheric pressure. The results show that the spray angle is reduced by increasing ambient pressure and maximum droplet velocity is shown from a nozzle tip and then the droplet velocity decreases as a spray moves to the downstream. The SMD decreases on the axial distance from 20 mm to 50 mm but it increases over 50 mm. That is due to the increasing number of collision with each droplet and interaction with ambient air on going downstream direction.

  • PDF

A Trade-off Analysis between Combustion and Cooling Performance of a Liquid Rocket Combustor with Fuel Film Cooling Scheme (연료 막냉각을 적용한 액체로켓 연소기의 연소/냉각 성능 간 trade-off 해석)

  • Joh, Mi-Ok;Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.35-41
    • /
    • 2012
  • Performance of a liquid rocket thrust chamber with regenerative cooling scheme has been numerically analyzed using in-house CFD code which can predict combustion/cooling performance and provide nozzle design parameters. This paper investigates trade-offs between combustion and cooling performance with varying amount of fuel directly injected into the chamber wall to form cooling films. Also is analyzed the effect of varying mixture ratios for the peripheral injectors on combustion performance enhancement. Further efforts to verify/improve the simulation methodology including comparison with the firing test results are planned to make it a reliable tool to optimize the film cooling and other major design parameters.

  • PDF

Conceptual Design of Thrust Chamber for 7 tonf-class Liquid Rocket Engine (7톤급 액체로켓엔진 연소기 개념설계)

  • Kim, Jong-Gyu;Ahn, Kyu-Bok;Joh, Mi-Ok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.454-456
    • /
    • 2012
  • Conceptual design results of a thrust chamber for a 7 tonf-class liquid rocket engine of KSLV-II 3rd stage were described. The engine system for KSLV-II 3rd stage is pump-fed system, the thrust chamber has vacuum thrust of 6.9 tonf, vacuum specific impulse of 336.9 sec, chamber pressure of 70 bar, nozzle expansion ratio of 94.5, total propellant mass flow rate of 20.5 kg/s, mixture ratio(O/F) of 2.45. The thrust chamber consists of mixing head with 90 coaxial swirl injectors and regeneratively combustion chamber cooled by kerosene.

  • PDF

A hybrid numerical flux for supersonic flows with application to rocket nozzles

  • Ferrero, Andrea;D'Ambrosio, Domenic
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.5
    • /
    • pp.387-404
    • /
    • 2020
  • The numerical simulation of shock waves in supersonic flows is challenging because of several instabilities which can affect the solution. Among them, the carbuncle phenomenon can introduce nonphysical perturbations in captured shock waves. In the present work, a hybrid numerical flux is proposed for the evaluation of the convective fluxes that avoids carbuncle and keeps high-accuracy on shocks and boundary layers. In particular, the proposed flux is a combination between an upwind approximate Riemann problem solver and the Local Lax-Friedrichs scheme. A simple strategy to mix the two fluxes is proposed and tested in the framework of a discontinuous Galerkin discretisation. The approach is investigated on the subsonic flow in a channel, on the supersonic flow around a cylinder, on the supersonic flow on a flat plate and on the flow in a overexpanded rocket nozzle.

Experimental Study of Film Cooling in Liquid Rocket Engine(III) (액체로켓엔진의 막냉각에 관한 실험적 연구(III))

  • Yu Jin;Choi Younghwan;Park Heeho;Ko Youngsung;Kim Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.203-207
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of film cooling in the thrust chamber of liquid rocket using LOx and Kerosene as propellant. The heat fluxes were obtained from the measured wall temperature to the axial direction of thrust chamber for different type of coolant, the various O/F ratio, mass flow rate and the location of the film cooling injector. A thin wall combustion chamber and nozzle were used to obtain the heat flux.

  • PDF

Analysis on the Unsteady Reacting Flow-field in Integrated Rocket Ramjet (일체형 로켓 램제트의 비정상 반응유동장 해석)

  • Ko, Hyun;Park, Byung-Hun;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1494-1498
    • /
    • 2004
  • Transition sequence of rocket to ramjet was simulated numerically for a two-dimensional axisymmetric can-type ramjet engine. Multi-species preconditioned Navier-Stokes equations with $k-{\varepsilon}$ turbulence model and finite-rate chemistry model was employed. To calculate transition sequence, initial flow-field conditions for inlet diffuser with closed port-cover was computed first, and then that result was applied as initial conditions after port-cover opened. Terminal shock was developed as a result of increased pressure in a combustor due to combustion and ramjet operated at supercritical condition. For a smaller nozzle throat area, buzz instability was occurred. Strong pressure oscillations were observed as a result of forward and backward movement of terminal shock and those oscillations were not damped out.

  • PDF

Unsteady Transient Flowfield in an Integrated Rocket Ramjet Engine (램제트 엔진의 비정상 천이 유동에 관한 연구)

  • H.K. Sung;Vigor Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.74-92
    • /
    • 2000
  • A numerical analysis has been conducted to study the transient flowfield during the transition from the booster to sustainer phase in an integrated rocket ramjet (IRR) propulsion system. Emphasis is placed on the unsteady inlet aerodynamics, fuel/air mixing in an entire ramjet engine during the flow transient phase. The computational geometry consists of the entire IRR engine, including the inlet, the combustion chamber, and the exhaust nozzle. Turbulence closure is achieved using a low-Reynolds-number two-equation model. The governing equations are solved numerically by means of a finite-volume, preconditioned flux-differencing scheme over a wide range of Mach umber. Various important physical processes are investigated systemically, including terminal shock train.

  • PDF