• Title/Summary/Keyword: Rocket Propulsion Test

Search Result 475, Processing Time 0.025 seconds

Thrust - Performance Test of Ethylene-Oxygen Single-Tube Pulse Detonation Rocket

  • Hirano, Masao;Kasahara, Jiro;Matsuo, Akiko;Endo, Takuma;Murakami, Masahide
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.205-210
    • /
    • 2004
  • The pulse detonation engine (PDE) has recently expected as a new aerospace propulsion system. The PDE system has high thermal efficiency because of its constant-volume combustion and its simple tube structure. We measured thrust of single-tube pulse detonation rocket (PDR) by two methods using the PDR-Engineering Model (full scale model) for ground testing. The first involved measuring the displacement of the PDR-EM by laser displacement meter, and the second involved measuring the time-averaged thrust by combining a load cell and a spring-damper system. From these two measurements, we obtained 130.1 N of time-averaged thrust, which corresponds to 321.2 sec of effective specific impulse (ISP). As well, we measured the heat flux in the wall of PDE tubes. The heat flux was approximately 400 ㎾/$m^2$. We constructed the PDR-Flight Mode] (PDR-FM). In the vertical flight test in a laboratory, the PDR-FM was flying and keeping its altitude almost constant during 0.3 sec.

  • PDF

Development and Evaluation of Startup Simulation Code for an Open Cycle Liquid Rocket Engine (개방형 사이클 액체로켓엔진 시동해석 코드 개발 및 평가)

  • Jung, Taekyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.67-74
    • /
    • 2019
  • In this paper, mathematical models of a simulation code are presented. The simulation code was developed for the startup analysis of an open cycle liquid rocket engine (LRE). Most of the components comprising an LRE, including the priming process in the propellant feeding line, were considered. A startup simulation of a 75-tonf LRE, which was used for the KSLV-II test launch vehicle (TLV), was performed. The simulation results showed good agreement with the engine acceptance test results, thus proving the validity of the startup simulation code.

High Altitude Test Facility for Small Scale Liquid Rocket Engine (소형 액체로켓엔진 고공환경 모사시험 설비)

  • Kim, Taewoan;Kim, Wanchan;Kim, Sunjin;Han, Yeoungmin;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.73-82
    • /
    • 2015
  • A high altitude test facility which includes supersonic diffuser and ejector has been developed to simulate atmospheric pressure at 25 km using a 500 N class small scale liquid rocket engine. Also high altitude simulation test for the small scale liquid rocket engine was performed to verify the facility's performance. The experimental facility consists of high altitude simulation device, propellants supply system and coolant supply system. Low pressure condition corresponding to about 27 km(0.021 bar) altitude atmosphere was successfully simulated and a small scale liquid rocket engine thrust level was confirmed at the simulated condition by the high altitude test facility verification test.

Reaction of an Insensitive Munitions(IM) Igniter for Solid Propulsion System (고체 추진기관 둔감화 점화 장치의 반응)

  • Ryu, Byung-Tae;Lee, Do-Hyung;Ryoo, Baek-Neung;Choi, Hong-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.352-358
    • /
    • 2011
  • This paper describes on the study of mitigation technique in which a pyrosensor is automatically sensing the rate of risk of fire or explosion of solid rocket motor exposed to an unexpected fire and makes the rocket motor burn itself safely. SCO test was carried out with a rocket motor loaded with HTPB propellant, in which a thermal pyrosensor igniter was installed. The rocket motor in SCO test was located in an oven at $50^{\circ}C$ for 7 hours. The temperature was regulated to be elevated at the rate of $3.3^{\circ}C$ per hour. Results showed Type V(Burning) reaction in this SCO test.

  • PDF

Development of Arm Fire Device for Solid Rocket (고체 추진기관 점화안전장치 개발)

  • Jang Seung-Gyo;Jung Jin-Suk;Kim In-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.169-172
    • /
    • 2005
  • The performance test result of the Arm Fire Device(Ignition Safety Device) for solid rocket which prevents accidental ignition was described. The results of the closed bomb test and the igniter test of the classical mechanical arm fire device and the advanced electro-mechanical arm fire device were presented, and according to the igniter test result it was realized that the electro-mechanical arm fire device has an advantage in aspect of the action time.

  • PDF

Natural Aging Properties Analysis of HTPB Propellant (HTPB계 고체추진제의 자연노화 물성 분석)

  • Park, Jung-Ho;Ryu, Nam-Sun;Park, Jae-Beom;Jung, Gyoo-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • Hydroxy-terminated polybutadiene (HTPB) propellants of solid rocket motors age differently under different storage temperatures. The shelf life of a solid rocket motor depends on the aging ratio of the HTPB propellant; it can be estimated through the viscoelastic properties by an aging test. This study analyzed the initial and natural aging properties during long-term storage. The initial properties were obtained from characterization and accelerated test results. The test results were obtained by analyzing the strain on cylindrical grains when a thermal load was applied.

Measurement of Liquid Rocket Engines in Flight Test (액체로켓엔진 비행시험 시 계측)

  • Kim, Cheulwoong;Jung, Eunhwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1054-1056
    • /
    • 2017
  • The Preparation for a flight test of the launch vehicle to verify the performance of the liquid rocket engine(LRE) is proceeding. Flight test of liquid rocket engine costs an enormous amount of money, has a restriction on measurement channels, so it requires the optimal measurement plan to check the prelaunch operation and determine the cause of abnormal situation. This paper surveys the foreign sources for LRE flight test. In recent years, as the tendency to eliminate all faults of LRE at the ground test the number of flight test is decreasing and in contrast, the number of measurements and measurement accuracy is increasing. This paper may be used as a reference for the preparation of an LRE flight test.

  • PDF

A Study on Film Cooling Characteristics of Liner in Liquid Rocket Engine (액체로켓엔진에서의 상온 기체를 이용한 라이너 막냉각 특성 연구)

  • Jeon, Jun-Su;Lee, Yang-Suk;Lee, Dong-Hyeong;Kim, Yoo;Ko, Young-Sung;Chung, Hae-Seung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.170-173
    • /
    • 2007
  • Cooling characteristics of a liner were investigated by a film cooling method using a gas nitrogen in a rocket engine. High temperature gas of this test was made by mixing liquid nitrogen with combustion gas of a liquid rocket. A supply system of gas nitrogen was additionally constructed to the existing test facility of liquid rocket engine, and a new test section consisted of a liner and a gas injection ring was manufactured. A 10 second firing test for finding cooling characteristics of the liner was successfully conducted and liner surface temperatures and hot gas temperature was obtained.

  • PDF

Test Facility Improvement for Hot Firing Test of a 7-tonf Combustor (7톤급 연소기 시험을 위한 시험 설비 변경)

  • Kim, Hyeon-Jun;Lim, Byoung-Jik;Kang, Dong-Hyuk;Jae, Won-Ju;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.493-497
    • /
    • 2012
  • The rocket engine test facility(ReTF) was improved for hot firing tests of 7 ton-class liquid rocket engine combustion chamber, which will be used for the third stage of the Korea Space Launch Vehicle II(KSLV-II), considering convenience of operation and maintenance, flexibility and safety. In this paper, main modifications and functions of improved ReTF were described. 초 록

  • PDF

Cool Down Characteristics of 7 Tonf-class Liquid Rocket Engine for KSLV-II (한국형발사체 7톤급 액체로켓엔진 냉각 특성)

  • Im, Ji-Hyuk;Yu, Byungil;Lee, Kwang-Jin;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.50-57
    • /
    • 2021
  • Engine cool down process is necessary for the liquid rocket engines using cryogenic propellants in order to meet the requirement of engine inlet temperature. This paper evaluates the cool down characteristics of oxidizer supply pipeline and engine in prechill process prior to the engine firing tests, and calculate the quantity of liquid oxygen consumption.