• Title/Summary/Keyword: Rocket Mass Ratio

Search Result 74, Processing Time 0.023 seconds

A Study on the Two-Phase Flow Transition and Atomization Characteristics in Effervescent Injectors (기체주입식 분사기의 이상유동 변화와 분무특성에 관한 연구)

  • Lee, Kangyeong;Jung, Hadong;Kang, Cheolwoong;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.144-154
    • /
    • 2022
  • Gas injection is a technique applied to improve throttling in liquid rocket engines and atomization in effervescent injectors. When a gas is injected into a liquid, it creates a two-phase flow inside the injector. The changes (bubbly flow, slug flow, annular flow, etc.) in the two-phase flow affect the injector's spray characteristics. In this study, cold-flow tests were performed by using three injectors with different orifice diameters and four aerators with different gas injection hole diameters. The experiments were done by changing the thrust ratio (liquid mass flow rate ratio) and gas-liquid mass flow rate ratio. Two-phase flow transition, breakup length, and discharge coefficient according to the injector/aerator design and flow conditions were investigated in detail.

A Study on Design of a Catalytic Ignitor for Liquid Rocket Engine using Hydrogen Peroxide and Kerosene (과산화수소/케로신을 사용하는 액체로켓엔진의 촉매 점화기 설계에 관한 연구)

  • Chae, Byoung-Chan;Lee, Yang-Suk;Jun, Jun-Su;Ko, Young-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.56-62
    • /
    • 2011
  • An experimental study on design of a catalytic ignitor was performed to use an ignition source for a small bi-propellant liquid rocket engine which use hydrogen peroxide and kerosene as propellants. In the catalytic ignitor, hot gas of hydrogen peroxide which was decomposed by a catalyst induced autoignition of kerosene. Mass flow rate and O/F ratio for the ignitor were calculated by CEA code. A combustion chamber which had a quartz window and thermocouples was manufactured to determine whether the ignition is successful. Ignition performance was investigated according to exit area of fixed rings and mixture ratio. Results showed that reliable ignition performance was achieved at non-choking exit area of fixed ring and O/F ratio of 6~8.

Comparison of Combustion Characteristic with GN2O and GOX as Oxidizer in Hybrid Rocket (하이브리드 로켓의 산화제 종류에 따른 고체연료 연소특성 비교)

  • Lee, Jung-Pyo;Cho, Sung-Bong;Kim, Soo-Jong;Yoon, Sang-Kyu;Park, Su-Hayng;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.223-227
    • /
    • 2006
  • In this study, the combustion characteristics was studied with various oxidizer in hybrid propulsion system. In this experiments $GN_2O$ and GOX were used as oxidizer, and PE was used as fuel. The combustion behavior was explained by flame temperature with mass O/F ratio, and the use of $GN_2O$ as the oxidizer caused a increase in combustion efficiency with GOX in the same hybrid motor. The mass flow rate of gaseous oxidizer was controlled by the several chocked orifices that have different diameter, and the oxidizer supply range was $0.0138{\sim}0.0427kg/sec$. As result, the empirical relation for oxidizer type was represented by mass flux of solid fuel, it was obtained with mass transfer number, and mass flux of oxidizer.

  • PDF

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(I) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (I))

  • 김형문;이상길;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In the present paper an attempt has been made to simulate the secondary injection-primary flow interaction in the conical rocket nozzle and to derive the performance of secondary injection thrust vector control(SITVC) system. Complex three-dimensional flowfield induced by the secondary injection is numerically analyzed by solving unsteady three-dimensional Euler equation with Beam and Warming's implicit approximate factorization method. Emphasized in the present study is the effect of secondary injection such as secondary mass flow rates and the momentum of secondary/primary nozzle flow mass rates upon the gross system performance parameters such as thrust ratio, specific impulse ratio and deflection angle. The results obtained in terms of system performance parameters show that lower secondary mass flow rate is advantageous for to reduce secondary specific impulse loss. It is further found that the nozzle with secondary jet injected downstream and interacting with fast primary flow is preferable for efficient and stable SITVC over the wide range of use with the penalty of side specific impulse loss.

  • PDF

Optimal Design of Fuel-Rich Gas Generator for Liquid Rocket Engine (액체로켓의 농후 가스발생기 최적설계)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.91-96
    • /
    • 2004
  • An optimal design of the gas generator for Liquid Rocket Engine (LRE) was conducted. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton in thrust with RP-1/LOx propellant. The optimal design was done for maximizing specific impulse of thrust chamber with constraints of combustion temperature and for matching the power requirement of turbopump system. Design variables are total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design provide length, diameter, and contraction ratio of gas generator. And the operational condition predicted by design code with resulting configuration was found to maximize the objective function and to meet the design constraints. The results of optimal design will be tested and verified with combustion experiments.

Experimental Study of Film Cooling in Liquid Rocket Engine(III) (액체로켓엔진의 막냉각에 관한 실험적 연구(III))

  • Yu Jin;Choi Younghwan;Park Heeho;Ko Youngsung;Kim Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.203-207
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of film cooling in the thrust chamber of liquid rocket using LOx and Kerosene as propellant. The heat fluxes were obtained from the measured wall temperature to the axial direction of thrust chamber for different type of coolant, the various O/F ratio, mass flow rate and the location of the film cooling injector. A thin wall combustion chamber and nozzle were used to obtain the heat flux.

  • PDF

Studies on Starting Transient in Solid Rockets

  • V.R. Sanal Kumar;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.6-10
    • /
    • 2003
  • Accurate description of starting transient history allows and justifies the use of small margin of safety for the engine parts, resulting in high motor mass ratio in addition to satisfying the control and guidance requirements of the vehicle. Studies have been carried out for the prediction and reduction of ignition peak and pressure-rise rate during the starting transient of solid rocket motors. Numerical studies have been carried out using a two dimensional Navier-Stokes solver. It has been inferred through the parametric studies that, in the case of solid rocket motors with uniform port, high ignition peak is observed at high spread rate and low pressure-rise rate. In the case of the port with sudden expansion configuration, high ignition peak is observed at relatively high average spread rate and high-pressure rise rate. These studies are expected to aid the designer in reducing the ignition peak by altering the propellant properties or igniter characteristics without sacrificing the motor performance.

  • PDF

A Study on the Thrust Throttling Using Gas Injection in Swirl Injectors (기체주입을 이용한 와류형 분사기들에서의 가변추력 연구)

  • Lee, Wongu;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.159-168
    • /
    • 2018
  • Thrust throttling in a liquid rocket engine can be implemented via several ways such as high pressure drop injector, dual manifold, multiple chamber, pintle injector, and gas injection. Thrust throttling using gas injection controls thrust by usually injecting inert gas into propellant through an aerator to reduce the propellant's bulk density. In this study, the outside-in aerator was used in the propellant line to create two phase flow. Closed-type, open-type, and screw-type bi-swirl coaxial injectors were utilized for investigating throttling characteristics such as pressure drop, mixture density, and discharge coefficient according to gas-liquid mass ratio.

Injection Condition Effects of a Pintle Injector for Liquid Rocket Engines on Atomization Performances (액체로켓 핀틀 인젝터의 분사조건이 미립화 성능에 미치는 영향)

  • Son, Min;Yu, Kijeong;Koo, Jaye;Kwon, Oh Chae;Kim, Jeong Soo
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.114-120
    • /
    • 2015
  • Effects of injection conditions on a pintle injector which is proper to recent liquid rocket engines requiring low cost, low weight, high efficiency and reusability were studied. The pintle injector with a typical moving pintle was used for atmospheric experiment using water and air. Injection pressures of water were considered 0.5 and 1.0 bar, 0.1 to 1.0 bar for injection pressures of air and 0.2 to 1.0 mm for pintle opening distance. Sauter mean diameters (SMD) of spray was measured at 50 mm distance from a pintle tip and SMD was treated as a representative parameter in this study. As a result, because of shape characteristics of the pintle injector, there was a transient region between the pintle opening distances of 0.6 and 0.7 mm and this region affected to mass flow rates and SMDs. Also, Reynolds numbers for gas, Weber numbers and momentum ratios were adopted as major non-dimensional paramters and the momentum ratio has strong correlation with SMD.

Development Thermal Design Program to Predict Film Cooling Performance in Liquid Rocket Engine (로켓엔진의 막냉각 성능 예측을 위한 열설계 프로그램 개발)

  • Cho Won-Kook;Moon Yoon-Wan;Seol Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.161-164
    • /
    • 2006
  • A design program has been developed to predict film cooling performance in a liquid rocket engine combustion chamber. A thermal protecting effect of low mixture ratio gas has been analysed by CFD. A one-dimensional film cooling model based on the CFD results has been implemented in the previously developed design program of regenerative cooling. The predicted heat flux at the nozzle throat ranges from -16% to +28% when it is compared to the published measured data. The throat heat flux reduces by 36% when film cooling of 10% of fuel mass flow rate is applied.

  • PDF