• Title/Summary/Keyword: Rocket Fire

Search Result 65, Processing Time 0.024 seconds

Design, Manufacture and Test of Subscale Solid Rocket Motor with Pulse Separation Device (펄스분리장치를 적용한 소형 추진기관의 설계, 제작 및 시험평가)

  • Ryu, Jung-Hun;Lee, Won-Bok;Suh, Hyuk;Kim, Won-Hoon;Oh, Jong-Yun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.133-137
    • /
    • 2010
  • A dual pulse solid rocket motor has several advantages compared to the single one. The range and the terminal velocity of the guided missile can be remarkably increased by the application of the pulse separation device(PSD) to the solid rocket motor which resulted in appropriate thrust distribution. In this study, the subscale dual pulse solid rocket motor with the bulkhead type PSD was designed, manufactured, and fire-tested. The bursting pressure, thermal characteristics, and the structural safety of the PSD were obtained by the tests and the results will be applied to the design of full-scale dual pulse rocket motor.

  • PDF

Reaction of an Insensitive Munitions(IM) Igniter for Solid Propulsion System (고체 추진기관 둔감화 점화 장치의 반응)

  • Ryu, Byungtae;Lee, Dohyung;Ryoo, Baekneung;Choi, Hongseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.85-91
    • /
    • 2012
  • This paper describes the results of study on reaction of insensitive igniter in which a pyrosensor is automatically sensing the rate of risk of fire or explosion of solid rocket motor exposed to an unexpected fire and makes the rocket motor burn itself safely. The Slow Cook Off(SCO) test following the regulation of MIL-STD-2105D was carried out with a rocket motor loaded with HTPB propellant, in which a thermal pyrosensor igniter was installed. The auto-ignition temperature measured was approximately $140^{\circ}C$ and it corresponded to Type V(Burning) reaction in SCO test, while the temperature by Kissinger equation was calculated to be $165.5^{\circ}C$.

Infrastructure of Propulsion Test Facility of Liquid Rocket (액체로켓 추진기관 시험설비 기반시설 고찰)

  • Cho, Namkyung;Kim, Sunghyuk;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.87-94
    • /
    • 2019
  • Liquid rocket propulsion test facility should provide for the interface condition installed on the upper level system for the test article. In addition, safety provision should be provided to be ready for accident such as explosion which can be occurred during development stage. For this purpose infra-structures of test facilities must be constructed so that stable combustion test can be performed and be guard against accidents. In this article, various aspects for infrastructures of propulsion test facilities are investigated including architecture and civil engineering aspects, test stand, room arrangements, interfaces among facilities, fire-fighting facilities, electrical power facilities.

On the Method for Hot-Fire Modeling of High-Frequency Combustion Instability in Liquid Rocket Engines

  • Sohn, Chae-Hoon;Seol, Woo-Seok;Valery P. Pikalov
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1010-1018
    • /
    • 2004
  • This study presents the methodological aspects of combustion instability modeling and provides the numerical results of the model (sub-scale) combustion chamber, regarding geometrical dimensions and operating conditions, which are for determining the combustion stability boundaries using the model chamber. An approach to determine the stability limits and acoustic characteristics of injectors is described intensively. Procedures for extrapolation of the model operating parameters to the actual conditions are presented, which allow the hot-fire test data to be presented by parameters of the combustion chamber pressure and mixture (oxidizer/fuel) ratio, which are customary for designers. Tests with the model chamber, based on the suggested scaling method, are far more cost-effective than with the actual (full-scale) chamber and useful for injector screening at the initial stage of the combustor development in a viewpoint of combustion instabilities.

Development of Weapon Control Unit using a Design Technique for Sequence Control Circuits (순차 제어회로 설계기법을 이용한 무장제어장치 개발)

  • Park, Deok-Bae;Kim, Hyung-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.632-637
    • /
    • 2008
  • On board Weapon Control Unit for a military aircraft, as a core equipment of the Weapon Management System, generates signals for selective jettison, emergency jettison and rocket fire and controls the external stores according to a pilot's weapon selection, aircraft's flight status and external store's installation status. This paper describes about detail design process and performance evaluation for Weapon Control Unit developed by a sequence control circuit design methodology.

An Experimental Study on the Regression Rate of the Hybrid Rocket with $GO_2$/HTPB Propellant Combination ($GO_2$/HTPB를 사용하는 Hybrid Rocket의 추진제 침투율에 관한 실험적 연구)

  • Kim, S.J.;Han, J.S.;Kim, Y.;Ji, P.S.;Cho, S.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.58-66
    • /
    • 1997
  • To investigate the effect of the oxidizer mass flow rate on the fuel regression rate of the hybrid rocket, a laboratory size rocket was designed and ground fire test were carried out. Oxidizer was gaseous oxygen and HTPB was used as a fuel. Following correlation was obtained from the experiment. $\dot{r}$=$0.183G_o^{0.605}$

  • PDF

Propellant Characteristics used for a Rocket-Assisted Projectile with Aluminium Contents (알루미늄 함량에 따른 로켓보조추진탄용 추진제 특성)

  • Jeong, Jae-Yun;Choi, Sung-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.60-66
    • /
    • 2019
  • In this report, the process characteristic(viscosity), mechanical properties, combustion characteristics, ground and flight test results of propellants used for a rocket-assisted projectile are described according to several aluminum contents. As the aluminum content increased, initial viscosity decreased, viscosity build-up accelerated, and combustion rate and pressure exponent decreased. In the ground fire test, the total impulse of the rocket-assisted projectiles containing 10 wt% of aluminum were 5% higher than that of the rocket-assisted projectiles containing 2 wt% and 18 wt% of aluminum. The motor efficiency compared to the theoretical performance was 85.6% with 18 wt% of aluminum, the lowest value among the propellant compositions.

Design and Implementation of Cold-Flow and Hot-Fire Test Stand of a Cryogenic Propellant Injector Used in LRE (초저온 추진제를 사용하는 액체로켓용 인젝터의 수류/연소시험장치 설계 및 제작)

  • Kim, Do-Hun;Park, Young-Il;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.61-65
    • /
    • 2010
  • To research and develop a liquid rocket engine injector, it needs empirical studies about the hydrodynamic and spray characteristics such as pressure drop, mixing and atomization. In this study, the design and implementation of lab-scale cold-flow/hot fire test stand which can supply cryogenic propellant and be controlled by time-critical LabVIEW cyclogram logic has been done. In order to visualize the spray of a liquid-centered swirl coaxial injector in cryogenic condition, LN2-GN2 cold-flow test has been done, and combustor assembly and thrust bed for LOX-$GCH_4$ hot-fire test have been fabricated.

  • PDF

Combustion Performance of a Pintle Injector Rocket Engine with Canted Slit Shape by Characteristic Length and Total Momentum Ratio (Canted Slit 형상의 핀틀 인젝터 로켓엔진의 특성길이와 운동량비에 따른 연소성능)

  • Yu, Isang;Kim, Sunhoon;Ko, Youngsung;Kim, Sunjin;Lee, Janghwan;Kim, Hyungmo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • In this study, a pintle injector rocket engine which uses kerosene and liquid oxygen as propellants was manufactured by collecting basic design data and establishing a design procedure. Combustion performance of the liquid rocket engine was investigated by characteristic velocity efficiency with characteristic length of the combustion chamber and total momentum ratio. As a result of hot fire tests, it showed that the engine had shorter characteristic length comparing to those of other type injectors, which was known as recommended value with the propellant combination. Also, the characteristic velocity efficiency was greatly affected by total momentum ratio and almost constant within 1.0~1.5.

Research and Development Status of Combustion Chamber of Liquid Rocket Engine for KSLV-II (한국형발사체 액체로켓엔진 연소기 연구 개발 현황)

  • Han, Yeoung-Min;Lee, Kwang-Jin;Kim, Jong-Gyu
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.291-294
    • /
    • 2012
  • The research and development status of combustion chamber of liquid rocjet engine for Korea Space Launch Vehicle(KSLV-II) are briefly described. The cold and hot firing tests of uni-element injector, the performance/heat flux measurement/hot firing tests of subscale combustion chamber and the performance/stability rating/regenerative cooling/hot fire tests of 30ton-class combustion chamber were successfully performed. Based on these results, the research and development of combustion chamber for 75ton-class liquid rocket engine are underway.

  • PDF