• Title/Summary/Keyword: Rocket Design

Search Result 657, Processing Time 0.027 seconds

Combustion Experiments of a High Pressure Liquid Propellant Thrust Chamber (액체로켓 엔진용 고압 연소기의 연소시험)

  • Seo, Seong-Hyeon;Han, Yeoung-Min;Moon, Il-Yoon;Lee, Kwang-Jin;Kim, Jong-Kyu;Lim, Byung-Jik;Ahn, Kyu-Bok;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.40-46
    • /
    • 2006
  • A 30-tonf-class fullscale thrust chamber for the application to a Low-Earth-Orbit Space Launch Vehicle has been combustion tested over the wide ranges of a mixture ratio and a chamber pressure. The thrust chamber designed for a pump-fed open cycle engine was tested with an ablative chamber instead of a regenerative one for the initial evaluation of its performance and function. The test results revealed stable combustion characteristics. The hardware survived the harsh environment and showed very sound functional characteristics. The measured combustion efficiency turned out to be 95% and a specific impulse at sea level was estimated as 254sec, which are comparable to or above the predetermined design values.

Effect of Chamber Configuration on Combustion Characteristic Velocity of Full-scale Combustion Chamber (실물형 연소기의 형상에 따른 연소특성속도 비교)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.149-152
    • /
    • 2008
  • Effects of chamber configuration on combustion characteristic velocity of full-scale combustion chamber for 30-tonf-class liquid rocket engine were studied. The configurations of combustion chamber are ablative and channel cooling chamber (${\varepsilon}$=3.2) which have detachable mixing head, and single body regenerative cooling chamber which has nozzle expansion ratio of 3.5 and 12, respectively. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/s, and the injectors of all combustion chamber have recess number 1.0 and double-swirl characteristics. The hot firing test results at design point show that the combustion characteristic velocity of the regenerative cooling chamber which has nozzle expansion ratio of 12 is higher than that of other combustion chambers. The reasons for the above result are the increases of combustion pressure and enthalpy of kerosene which is heated due to cooling of the chamber wall before injection into the combustion field.

  • PDF

Evaluation of Nozzle's Combustion Instability Suppression Effect by Linearized Euler Equation (선형 오일러 방정식을 이용한 노즐의 연소불안정 감쇠 효과 평가)

  • Kim, Junseong;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.1-10
    • /
    • 2019
  • The wave motion inside the nozzle is known as one of the major damping elements of the rocket's combustion instability by it's aeroacoustic effects that result from the flow passage through the nozzle throat. These effects can be quantitatively evaluated by the nozzle admittance. In this study, one-dimensional linearized Euler equation was adopted to calculate the nozzle admittance, and trend analysis was performed depending on the nozzle's main design variables. As a result, when nozzle converging part shortens, it is verified that the frequency dependency of the nozzle admittance is decreased due to the widened frequency range with lowered longitudinal nozzle admittance. Also, admittance estimation using the short nozzle theory is not appropriate when the first tangential mode of the pressure perturbation arises.

Comparison of Combustion Performance between Single Injector Combustor and Sub-scale Combustor (액체로켓엔진 연소기용 단일 분사기 연소기와 축소형 연수고 수류/연소시험 결과 비교)

  • Kim, Seung-Han;Han, Yeoung-Min;Seo, Seong-Hyeon;Moon, Il-Yoon;Lee, Kwang-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.451-454
    • /
    • 2006
  • This paper describes the results of cold flow test and hot firing tests of an uni-element coaxial swirl injector and hot firing tests of a subscale combustor, as to the development effort of coaxial swirl injector for high performance liquid rocket engine combustor. A major design parameter for coaxial swirl injector is the recess number of a bi-swirl injector. The results of hot firing tests of the uni-element injector combustor and the sub-scale combustor are analyzed to investigate the effect of the recess number influencing on the combustion performance and pressure fluctuation. The test results of a cold flow test of the unielement combustor shows that it was shown that the change in recess number has significant effect on mixing characteristics and efficiency, while the effect of recess number on atomization characteristic is not The results of a series of firing tests using unielement and subscale combustor show that the recess length significantly affects the hydraulic characteristics, the combustion efficiency, and the dynamics of the liquid oxygen/kerosene bi-swirl injector. As a point of combustion performance, combustion efficiencies are 90% for unielement combustor and 95% for subscale combustor. The difference in the characteristic velocities between the unielement combustor and the subscale combustor may be caused by the difference in thermal loss to the combustor wall and the relative lengths of the combustion chamber. For a mixed type coaxial swirl combustor, the pressure drop across the injector increases as recess number becomes larger. The low frequency pressure fluctuation observed in unielement combustor can be related to the propellant mixing characteristics of the coaxial bi-swirl injector. The effect of the recess number on the pressure fluctuation inside the combustion chamber is more significant in un i-element combustor than the subscale combustor, of which the phenomena are also observed in time domain and frequency domain.

  • PDF

A Study on Quantification of Damping Efficiency of Acoustic Cavities by Absorption Coefficient (흡음 계수를 이용한 연소불안정 제어용 음향공의 감쇠 정량화)

  • Cha, Jung-Phil;Song, Jae-Gang;Hong-Jip Kim;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.438-445
    • /
    • 2007
  • A Helmholtz resonator as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified by linear acoustic analysis and atmospheric acoustic tests. To compare the results of acoustic attenuation effect in accordance with uni-resonator's geometry, quantitative analyses were made in the cases of various orifice diameters and lengths. Next, in the experiments to compare the results of acoustic attenuation effect by a difference in the number of resonators, damping capacity of harmful resonant frequency was improved by the increase of the number of resonators. On the other hand, attenuation efficiency of the frequency tended rather to lower due to over damping from the point of view of absorption coefficient. As the result, tuning the suitable geometry for the resonator to the resonant frequency is required for the control using the resonator. Also, the design of resonator's geometry and the choice of its number are important to put up the optimal efficiency in consideration of restriction of its volume.

Analysis of Spray Combustion for the Performance Prediction of Liquid Rocket Combustor (3차원 분무연소장 해석에 의한 액체추진기관 연소실 성능예측에 대한 연구)

  • 황용석;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.31-39
    • /
    • 1999
  • In this paper, numerical experiment is attempted to analyze and compare the combustion efficiency of the burning sprays due to OFO, FOF triplet / FOOF split doublet injectors. Preconditioned Wavier-Stokes equation system with low Reynolds number $\kappa$-$\varepsilon$ model for turbulence closure, is LU-SGS time-integrated. Spray processes are modeled by DSF analysis with experimentally determined injection characteristics. n-heptane/air global reaction model approximates the combustion for simplicity, and the influence of turbulence on the chemical reaction is included using eddy dissipation model. The results showed the FOF triplet injector of highest combustion efficiency, whereas the OFO type of poet performance. It was also observed that the droplet mean diameter and the average gas temperature due to the mixing efficiency, are the representative parameters for the performance design of combustion.

  • PDF

Cold flow Test and Ignition Test of a 75-tonf-Class Thrust Chamber with Ablative Material for Technology Demonstration (75톤급 기술검증용 내열재 연소기의 수류시험과 점화시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Kim, Mun-Ki;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.26-37
    • /
    • 2011
  • A 75-tonf-class LRE(liquid rocket engine) thrust chamber with ablative material for technology demonstration was manufactured on the basis of development technologies of 30-tonf-class LRE. Hydraulic characteristics of the thrust chamber were examined through cold flow test and ignition test of low flow condition. Test result showed that hydraulic function was good. Side ignition method with igniter ring also showed a fine function of ignition in operating ways of static condition. But a close review is required to understand the phenomena of generation and extinction of specific frequencies showed in dynamic characteristics ways. To achieve these, a large combustion test facility which is capable of performing combustion test at design condition of the 75-tonf-class thrust chamber should be constructed as soon as possible.

Numerical Analysis of 1-D Ablation and Charring of a Composite Heat Insulator Using Finite Analytic Method (유한해석법을 이용한 조합 내열부품의 1차원 삭마 및 숯층 형성 해석)

  • 함희철;배주찬;이태호;전광민;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.943-951
    • /
    • 1992
  • The objectives of this study are to analyse the thermal response behavior occurring in the charring ablative material more realistically by considering ablation and char phenomena occurring in several material layers, and to increase the reliability of thermal analysis by being able to get stable solutions through using the finite analytic method. A program has been developed to predict the temperature distribution, ablation thickness, char thickness, ablation velocity and char velocity by solving non-linear one-dimensional heat conduction equation. Results of calculation were compared with results of published papers. From this compariosn this program was proved to be a very good tool for thermal design and analysis of charring ablative materials used in the rocket propulsion system.

Geometric Effects on Damping Characteristics of Acoustic Cavity for the Control of Combustion Instabilities (연소불안정 제어를 위한 음향공의 감쇠에 대한 형상 효과)

  • 차정필;고영성;고영성
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.59-66
    • /
    • 2006
  • Acoustic cavity as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified in atmospheric temperature. First, harmful resonant frequency in a modeling chamber can be damped effectively by the installation of properly-tuned acoustic cavity. Besides, geometric effects of acoustic cavity on damping characteristics are analyzed and compared quantitatively. Satisfactory agreements have been achieved with linear acoustic analysis and experimental approach. Results show that the acoustic cavity of the largest orifice area or the shortest orifice length was the most effective in acoustic damping of the harmful resonant frequency. Finally, it is proved that an optimal design process is indispensable for the effective control of combustion instabilities.

A Study on filament Winding Process of A CNG Composite Pressure Vessel (필라멘트 와인딩 압력용기의 최적설계와 CNG자동차 연료 충진용기 개발)

  • Kim, Eui-Soo;Kim, Ji-Hoon;Park, Yoon-So;Kim, Chul;Choi, Jae-Chan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.933-937
    • /
    • 2002
  • The fiber reinforced composite material is widely used in the multi-industrial field where the weight reduction of the infrastructure is demanded because of their high specific modulus and specific strength. Pressure vessels using this composite material in comparison with conventional metal vessels can be applied in the field where lightweight and the high pressure are demanded from the defense and aerospace industry to rocket motor case due to the merits which are energy cutdown the weight reduction and decrease of explosive damage preceding to the sudden explosion which is generated by the pressure leakage condition). In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding composite pressure vessel receiving an internal pressure, the standard interpretation model is developed by using the ANSYS, general commercial software, which is verified as the accuracy and useful characteristic of the solution based on Auto LISP and ANSYS APDL. Both the preprocessor for doing exclusive analysis of filament winding composite pressure vessel and postprocessor that simplifies result of analysis have been developed to help the design engineers.

  • PDF