• Title/Summary/Keyword: Rocket Design

Search Result 656, Processing Time 0.025 seconds

Numerical Study of Flow Characteristics in a Solid Particle Incinerator for Various Design Parameters of Injectors (고체 입자 소각로에서 분사기의 설계 인자에 따른 유동 특성에 관한 수치해석적 연구)

  • Son, Jin Woo;Kim, Su Ho;Sohn, Chae Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1079-1089
    • /
    • 2013
  • The flow characteristics in a solid particle incinerator are investigated numerically for high burning rate of wastes. The studied incinerator employs both a swirl flow used in the furnace of powerplants and a design concept applied to a rocket combustor. As the first step, the non-reactive flow field is analyzed in the incinerator with primary and secondary injectors through which solid fuel and air are injected. The deflection angle of a primary injector, inclination angle of a secondary injector, and gap between the two types of injectors are selected as design parameters. The swirl number is adopted for evaluating the degree of swirl flow and estimated over wide ranges of three parameters. The swirl number increases with deflection angle, but it is affected little by inclination angle. Recirculation zones are formed near the injectors, and their size affects the swirl number. The swirl number decreases with the zonal size of recirculation. From the numerical results, the design points can be found with strong swirl flow.

Design and Experimental Verification of Uni-Injector Using Gas Methane and Lox as Propellants (가스메탄/액체산소를 추진제로 하는 단일 인젝터 설계 및 실험적 검증)

  • Jeon, Jun Su;Min, Ji Hong;Jang, Ji Hun;Ko, Young Sung;Kim, Sun Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.275-283
    • /
    • 2013
  • An injector that uses methane gas ($CH_4$) and liquid oxygen ($LO_x$) as propellants was designed to verify the combustion characteristics of an engine that uses methane, which is one of the next-generation propellants. A swirl/shear coaxial-type injector was used, and flow analysis was performed using Fluent to determine the main design parameters of the injector. A hydraulic test was performed to understand the atomization and spray pattern characteristics of the injector. Next, a combustion test was performed at the design point to understand the ignition and combustion stability. Additional combustion tests were performed according to the O/F ratio to investigate the combustion characteristics and stabilities using the characteristic exhaust velocity ($C^*$) and fluctuation of the chamber pressure. The experimental results showed that the combustion efficiency was greater than 90%, and the pressure fluctuation was lower than 2% under all conditions.

Pogo Suppressor Design of a Space Launch Vehicle using Multiple-Objective Optimization Approach (다목적함수 최적화 기법을 이용한 우주발사체의 포고억제기 설계)

  • Yoon, NamKyung;Yoo, JeongUk;Park, KookJin;Shin, SangJoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • POGO is a dynamic axial instability phenomenon that occurs in liquid-propelled rockets. As the natural frequencies of the fuselage and those of the propellant supply system become closer, the entire system will become unstable. To predict POGO, the propellant (oxidant and fuel) tank in the first stage is modeled as a shell element, and the remaining components, the engine and the upper part, are modeled as mass-spring, and structural analysis is performed. The transmission line model is used to predict the pressure and flow perturbation of the propellant supply system. In this paper, the closed-loop transfer function is constructed by integrating the fuselage structure and fluid modeling as described above. The pogo suppressor consists of a branch pipe and an accumulator that absorbs pressure fluctuations in a passive manner and is located in the middle of the propellant supply system. The design parameters for its design optimization to suppress the decay phenomenon are set as the diameter, length of the branch pipe, and accumulator. Multiple-objective function optimization is performed by setting the energy minimization of the closed loop transfer function in terms of to the mass of the pogo suppressor and that of the propellant as the objective function.

The study of ignition characteristics of solid propellant using Arc Image Furnace (광학특성을 이용한 고체추진제 점화특성 연구)

  • Yoo, Ji-Chang;Kim, In-Chul;Jung, Jung-Yong;Ko, Seung-Won;Lee, Kyung-Joo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • The objective of the present work is to characterize design parameters of solid propellant ignitor for composite, double base, and nitramine propellants using arc image furnace. Arc image furnace and fiber optics surface reflectometer were used to measure ignition delay time and reflected optical energy of several compositions of composite, double base and nitramine base rocket propellant at different pressure levels each other. The order of ignitability was double base > composite> nitramine propellants at initial pressure of over 75 psia. The highest ignition energy was needed to ignite nitramine propellant, however, the ignition delay time decreased abruptly as the pressure increased up to the range of $75{\sim}400$ psia. The absorbtion of radiation energy could be increased by the addition of small amount of opacifiers as carbon black, ZrC, WC and burning catalyst.

Combustion Experiments of a High Pressure Liquid Propellant Thrust Chamber (고압 실물형 연소기의 저압 및 설계점 연소시험)

  • Seo Seonghyeon;Han Yeoung-Min;Moon Il-Yoon;Lee Kwang-Jin;Song Joo-Young;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.269-273
    • /
    • 2005
  • A practical, 30-tonf-class fullscale thrust chamber has been combustion tested using real propellants for the first time in the domestic technology scene. The very first combustion test was conducted at a low mass flow rate condition for the preliminary assessment of any problems associated with its function and performance while reducing risks from a high chamber pressure never achieved before. A test for the design condition achieved through a low-pressure stage shows stable characteristics of all the static pressures and thrust. Dynamic pressures measured in the manifolds and the chamber did not reveal any distinct wave coupled to a specific frequency and their intensities reside in the allowable range. Moreover, it is encouraging to find no physical failures with a thrust chamber hardware.

  • PDF

A Study on Filament Winding Process of A CNG Composite Pressure vessel (CNG 복합용기의 필라멘트 와인딩 공정에 관한 연구)

  • Kim, C.;Kim, E. S.;Kim, J. H.;Choi, J. C.;Park, Y. S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.656-660
    • /
    • 2002
  • The fiber reinforced composite material is widely used in the multi-industrial field where the weight reduction of the infrastructure is demanded because of their high specific modulus and specific strength. Pressure vessels using this composite material in comparison with conventional metal vessels can be applied in the field where lightweight and the high pressure is demanded from the defense and aerospace industry to rocket motor case due to the merits which are energy curtailment by the weight reduction and decrease of explosive damage precede to the sudden explosion which is generated by the pressure leakage condition. In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding composite pressure vessel receiving an internal pressure, the standard interpretation model is developed by using the ANSYS 5.7.1, the general commercial program, which is verified as the accuracy and useful characteristic of the solution based on Auto LISP and ANSYS APDL. Both the preprocessor for doing exclusive analysis of filament winding composite pressure vessel and postprocessor that simplifies result of analysis have been developed to help the design engineers.

  • PDF

Status and Prospect of Spacecraft Propulsion System (우주비행체 추진기관 기술 현황 및 전망)

  • Kim, Su-Kyum;Chae, Jong-Won;Won, Su-Hee;Jun, Hyong-Yoll
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.695-701
    • /
    • 2016
  • Spacecraft propulsion system is a kind of rocket engine that has been developed from the end of 1950s for attitude control and orbit maintenance of satellite. Since the spacecraft propulsion system has to be used for a relatively long time, therefore, stability of propellant and life of thruster could be very important factor for propulsion system design. Recently, green propellant propulsion and all electrical propulsion system have became very important issue, and we also need a development according to well organized plan. In this paper, we will introduce the development status, key technologies and development prospect of spacecraft propulsion system.

A Study on the Blade Load Measurement of Partial-admission Turbine Cascade (충동형 터빈 캐스케이드의 깃 하중 측정에 관한 연구)

  • Lim, Dong-Hwa;Jang, Jin-Man;Lee, Eun-Seok;Kim, Jin-Han;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2007
  • An impulse turbine, which is a main component of a liquid rocket engine, needs to be a small size with light weight and generate large power. Since the impulse turbine is being operated under complicated supersonic conditions, flow analysis and performance prediction largely depend on CFD technique. In order to increase the reliability of the prediction code, however, it often requires an experimental data to compare. In this research a rotating turbine rotor with multiple blades is simulated with a two-dimensional stationary cascade to check the effect of major flow parameters. Mach number is measured at nozzle exit by using a pitot tube and the blade thrust was also measured with a load cell. The measured thrust coefficient and the power are compared well with the designed conditions, which proves the design procedures are properly taken.

Comparison of Injection Uniformity as the Dividing Plate Installation in Fuel Manifold (연료 매니폴드내의 분리판 장착에 따른 분사균일성 비교)

  • Yoo Doc-Koon;Cho Won-Kook;Seol Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.130-134
    • /
    • 2006
  • The injection uniformity of the fuel manifold in a liquid rocket engine has been analyzed with dividing plates to improve the cooling performance at the face plate. Three dimensional computational fluid dynamics analysis has been performed to compare the injection uniformity for 5 candidate designs and has been verified to compare with the measured data for the optimal manifold design. For the case I and II, the coolant mass flux increases as the whole working fluid is enforced to flow under the dividing plate. The injection uniformity decreases due to the variation of mass flux at the end of dividing plate and the concentration of mass flow rate at the center of manifold. However case III and IV have uniform injection performance due to reduced mass flux concentration as the coolant can flow along both upper passage and lower passage of the dividing plate. Among the candidate designs, case IV is thought to be the optimal dividing plate with regard to cooling performance and injection uniformity.

  • PDF

Combustion Experiments of a High Pressure Liquid Propellant Thrust Chamber (액체로켓 엔진용 고압 연소기의 연소시험)

  • Seo, Seong-Hyeon;Han, Yeoung-Min;Moon, Il-Yoon;Lee, Kwang-Jin;Kim, Jong-Kyu;Lim, Byung-Jik;Ahn, Kyu-Bok;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.40-46
    • /
    • 2006
  • A 30-tonf-class fullscale thrust chamber for the application to a Low-Earth-Orbit Space Launch Vehicle has been combustion tested over the wide ranges of a mixture ratio and a chamber pressure. The thrust chamber designed for a pump-fed open cycle engine was tested with an ablative chamber instead of a regenerative one for the initial evaluation of its performance and function. The test results revealed stable combustion characteristics. The hardware survived the harsh environment and showed very sound functional characteristics. The measured combustion efficiency turned out to be 95% and a specific impulse at sea level was estimated as 254sec, which are comparable to or above the predetermined design values.