• Title/Summary/Keyword: Rocket Design

Search Result 657, Processing Time 0.03 seconds

Effect on the Space and Global Environments by the Space Debris (인공위성이 우주 및 지구환경에 미치는 영향 - 우주폐기물(Space Debris) 중심으로 -)

  • Kim, Won-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.191-200
    • /
    • 2000
  • Recently, NORAD reported that only 6% of the total space objects cataloged in the table as above 10cm objects were being operated for the space missions and the others were just non-operated objects, such as rocket body, useless satellites which were finished their missions, and other fragments of space debris. A major contributor to the orbital debris background has been object breakup. Breakups generally are caused by explosions and collisions. Several international research groups and big countries' governments are trying to develop advanced technology for de-orbiting and to design new future satellites' modeling. The future need to be considered continuously that kind of technology and designing to preserve space and global environmental safety and to maintain welfare of mankind forever.

  • PDF

The effects of the Control of Combustion Instabilities in accordance with various Acoustic Cavities (음향공 형상에 따른 연소 불안정 제어 효과)

  • Cha Jung-Phil;Yang Jea-Jun;Seo Ju-Hyoung;Kim Hong-Jip;Ko Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.73-76
    • /
    • 2006
  • Acoustic cavity as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified in atmospheric temperature. Geometric effects of acoustic cavity on damping characteristics are analyzed and compared quantitatively. Satisfactory agreements have been achieved with linear acoustic analysis and experimental approach. Results show that the acoustic cavity of the largest orifice area or the shortest orifice length was the most effective in acoustic damping of the harmful resonant frequency finally, it is proved that an optimal design process is indispensable for the effective control of combustion instabilities.

  • PDF

Concept Design of Hydro Reactive Solid Propellant for Underwater High Speed Ramjet Engine System (수(水)반응성 고체추진제를 이용한 수중고속램제트엔진 시스템 개념 설계)

  • Chae Jae-Ou;Sim Ju-Hyen;Kwak Yong-Whan;Koo Hyung-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.121-131
    • /
    • 2005
  • For thrust motion of high speed underwater torpedo the special hydro reactive fuels that burns in vapor water and water supply from aboard is used. The main component of this hydro reactive fuel is the powder of active metal (Mg, Al) that can burn in water vapor with large heat generation in the rocket combustion chamber. The thermodynamic analysis of combustion properties of the burning of the particles of these active metal in the vapor water have been carried out. The conception for the possible content variants of the hydro reactive fuels have been discussed using the geometrical and thermodynamic combustion conditions with the basic recommendation for contents of designed hydro reactive fuels in future.

  • PDF

The computational characteristics of thrust and propellant mixture ratio regulators for LRE using a propellant combination of methane and oxygen

  • 주대성;남궁혁준;조용호;김경호;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.18-18
    • /
    • 2002
  • A project where the TPUs(Turbo Pump Units) for 10tf-thrust oxygen/methane LRE (Liquid Rocket Engine) are under development is being implemented to include an experimental combustion chamber developed. In the process of it, we introduced the power-balanced engine cycles in order to substantiate concepts of the engine using the combinations of the propellants. Accordingly, the main engine parameters of nominal operating mode are resulted from the 1-Dcalculations and it is found that the regulators are needed for controlling the expected pressure levels in the characteristics of propellant mixture ratio and thrust supposing the regulator is set to analogue-typed one which is easy to develop.The technical requirements like the nominal flow rate, its deviations expected and the pressure difference In need helped the several main characteristics of regulators to be determine in this stage. Here, a dozen of deviation values in the main parameters related to engineoperation are taken into independent consideration and accepted to the results for additional regimes of the regulators.Finally, we can determine the scheme and the primary dimensions along with the calculation design of the spring acceptable for general configuration which can definitely forwarded to the autonomous tests of the aggregates, The obtained data in further will be used for successive refinement of operating mode of the engine.

  • PDF

Thermo-Elastic Analysis of the Spatially Reinforced Composite Nozzle (다방향으로 입체 보강된 복합재 노즐의 열탄성해석)

  • 유재석;김광수;이상의;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.100-105
    • /
    • 2002
  • This paper predicts the material properties of spatially reinforced composites (SRC) and analyzes the thermo-elastic behavior of a kick motor nozzle manufactured from that material. To find the appropriate SRC structure for the nozzle throat that satisfies given design conditions, the equivalent material properties of the SRC are predicted using the superposition method for those of rod and matrix. Studied are the elastic behavior, temperature distribution, and thermo-elastic behavior of a kick motor nozzle composed of carbon/carbon SRC as a throat part. The elastic deformation of the nozzle composed of 3D carbon/carbon SRC shows asymmetry in a circumferential direction. However, 4D carbon/carbon SRC nozzle shows uniform deformation in the circumferential direction. Stress concentration in connecting parts of the kick motor nozzle is ultimately high due to the high temperature gradient in each connecting part. The thermo-elastic deformations of both the 3D and the 4D SRC nozzles are uniform in the circumferential direction due to the isotropy of CTE of each SRC. The deformation of the 3D SRC nozzle is a slightly smaller than that of the 4D SRC nozzle in the nozzle throat, which is favorably effective on rocket thrust. The circumferential stress is the most critical component of the kick motor nozzle. The 4D SRC nozzle having 1,1,1,1.7 diameters in each direction has the smallest circumferential stress among several SRC nozzles.

  • PDF

Flow Analyses for the Improvement of Uniform Distribution at LOx Manifold of a $30\;ton_f$ Full-scaled Combustor (30톤급 실물형 연소기 산화제 매니폴드 유동해석을 통한 유량 균일성 개선)

  • Kim, Hong-Jip;Kim, Seong-Ku;Kim, Jong-Kyu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.16-23
    • /
    • 2008
  • Flow analyses have been performed to investigate the uniformity of propellant flow through the oxidizer manifold of a 30 tonf full-scaled combustor. Injectors were simulated as porous medium layers of equivalent pressure drops. The uniformity of oxidizer propellant has been analyzed for various diameters of holes in vertical/horizontal distributors and configurations of oxidizer inlet to propose an improved design solution. It has been proven that the mass flow uniformity were improved by adjusting the holes in vertical/horizontal distributors.

Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster (마이크로 추력장치용 과산화수소 촉매 반응기)

  • Lee, Dae-Hun;Cho, Jeong-Hun;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF

Design for improving the impact resistance of a vehicle equipped with the circuit card assembly (비행체 탑재 회로카드 조립체의 내충격 향상을 위한 설계)

  • Lee, Chang-Min;Kang, Dong-Suk;Shin, Young-Hoon;Lee, Ki-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.48-53
    • /
    • 2014
  • Rocket, held using the CCA for the mission, a plurality of recording devices, and navigation equipment. In case of a projectile which is entered the water after fired into the air, after performing stages and fairing separated in flight to enter the underwater. It is caused by the explosion of gunpowder mainly, vibration phenomenon of a large transition is induced structurally very, also on entering the water, have a significant shock structurally separated. If shock is transmitted directly to the CCA through the body, it can be caused malfunction of payloads, resulting in failure of the mission of the projectile. In order to ensure the stability against shock, in this paper, Calculating a target resonacne frequency of the CCA, and verified through modal test and analysis. Maximum acceleration position of CCA is checked by SRS analysis. In addition, effectiveness of shock isolation system through shock analysis.

  • PDF

Numerical Study of Cavitating flow around Axysimmetric and 2D Body in Cryogenic Fluid (극저온 유체내에서 운행하는 물체 주위의 공동현상 해석에 관한 연구)

  • Lee, Se-Young;Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.309-312
    • /
    • 2007
  • The cryogenic fluid is the propellant for the liquid rocket engine. The design of space launcher vehicle is guided by minimum size and weight criteria, so the turbo pump solicits high impeller speed. Such high speed results in a zone of pressure drop below vapor pressure causing caivtation around inducer blades. The cryogenic fluid has different characters from isothermal fluid like water. The cryogenic fluid has very sensible thermodynamic properties and the phase change undergoes evaporative cooling. So, the developed code has to be modified cavitation modeling and it is added the energy equation for temperature sensitivity.

  • PDF

Risk Management of Launch Vehicle Propulsion System (우주 발사체 추진기관의 위험 관리)

  • Cho, Sang-Yeon;Shin, Myung-Ho;Ko, Jung-Hwan;Oh, Seung-Hyub;Park, Jeong-Joo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.3-6
    • /
    • 2007
  • Korea Aerospce Research Institute(KARI) has been developing the first civilian rocket, Korea space launch vehicle (KSLV-I), which can put the small size satellite into designated orbit. Developing launch vehicles contains a lot of uncertainty due to large scale, complexity, and technical difficulty. The uncertainty may become risk in the areas of business and technology which causes schedule delay, cost increase, and design changes of subsystems and components. This study describes the technical risk identification methods using FTA and procedures of planning and implementation of risk assessment and reduction of launch vehicle propulsion system.

  • PDF