• Title/Summary/Keyword: Rocket Design

Search Result 659, Processing Time 0.021 seconds

Design and testing of the KC-100 Spin Recovery Parachute System (SRPS)

  • Lee, Dong-Hun;Nho, Byung-Chan;Kang, Myung-Kag;Kang, Kyung-Woo;Lee, Ju-Ha;Kim, Su-Min;Kwon, Young-Suk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.117-125
    • /
    • 2012
  • This paper presented the design of SRPS, ground function test, and the deployment test on a high speed taxi of KC-100 airplane. KAI has developed a spin recovery system in collaboration with Airborne Systems for KC-100 general aviation airplane. Spin mode analysis, rotary balance and forced oscillation tests were performed to obtain the rotational, dynamic derivatives in the preliminary design phase. Prior to the detailed design process of SRPS, approximations for initial estimation of design parameters- fineness ratio, parachute porosity, parachute canopy filling time, and deployment method- were considered. They were done based on the analytical disciplines such as aerodynamics, structures, and stability & control. SRPS consists of parachute, tractor rocket assembly for deployment, attach release mechanism (ARM) and cockpit control system. Before the installation of SRPS in KC-100 airplane, all the control functions of this system were demonstrated by using SBTB(System Breakout Test Box) in the laboratory. SBTB was used to confirm if it can detect faults, and simulate the firing of pyrotechnic devices that control the deployment and jettison of SRPS. Once confirmed normal operation of SRPS, deployment and jettison of parachute on the high speed taxiing were performed.

PASEM을 이용한 KSR-III Nose Fairing 분리운동 예측

  • Ok, Ho-Nam;Kim, In-Sun;Ra, Sung-Ho;Kim, Seong-Lyong;Oh, Beom-Suk
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.171-181
    • /
    • 2003
  • The nose fairings of KSR-III are designed to be separated from the rocket by explosive force at the mission altitude to expose the payload. Adequate amount of separation force should be imposed to allow safe separation without collision between the fairings and the rocket, and the separation device was designed for the separation at very high altitude where almost no air load was expected. As the development of KSR-III goes on, several design changes have made and lower separation altitude of 45km is expected as a result. Under these circumstances, it is required to determine if the nose fairings can be separated without collision with much severer air load than for the design condition. In this study, the 6-DOF motion analysis program, PASEM, which was developed to predict the strap-on booster separation, is modified to simulate the pivotal motion of the fairings at early stages of separation. The accuracy of pivot motion simulation is validated by comparison with the results of ground test and the accurate separation conditions are deduced from it. Trajectory simulations are performed to see if separation without collision is possible with varying angle of attack, direction of gravity, and the effect of gust. It is also found that reducing the separation angle of the clamshell hinge from 60 degrees to 40 degrees can enhance separation safety and separation at lower altitude of 40km can be done without collision.

  • PDF

Burn-back Analysis for Propellant Grains with Embedded Metal Wires (금속선이 삽입된 추진제 그레인의 Burn-back 해석)

  • Lee, Hyunseob;Oh, Jongyun;Yang, Heesung;Lee, Sunyoung;Khil, Taeock
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.12-19
    • /
    • 2022
  • Propellant grains with embedded metal wires have been used for enhancement of burning rate while maintaining high loading density. For the performance design of a solid rocket motor using propellant grain with embedded metal wires, burn-back analysis is required according to number, location, arrangement angle of metal wires, and augmentation ratio of the propellant burning rate near a wire region. In this study, a numerical method to quickly calculate a burning surface area was developed in response to the design change of the propellant grain with embedded metal wires. The burning surface area derived from the developed method was compared with the results of a CAD program. Error rate decreased as the radial size of the grid decreased. Analysis for characteristics of burning surface area was performed according to the number and location of metal wires, the initial and final phases were shortened and the steady-state phase was increased when the number of metal wires increased. When arranging the metal wires at different radii, the burning surface area rapidly increased in the initial phase and sharply decreased in the final phase compared to the case where the metal wires were disposed in the same radius.

Stochastic investigation on three-dimensional diffusion of chloride ions in concrete

  • Ye Tian;Yifei Zhu;Guoyi Zhang;Zhonggou Chen;Huiping Feng;Nanguo Jin;Xianyu Jin;Hongxiao Wu;Yinzhe Shao;Yu Liu;Dongming Yan;Zheng Zhou;Shenshan Wang;Zhiqiang Zhang
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.247-261
    • /
    • 2023
  • Due to the non-uniform distribution of meso-structure, the diffusion of chloride ions in concrete show the characteristics of characteristics of randomness and fuzziness, which leads to the non-uniform distribution of chloride ions and the non-uniform corrosion of steel rebar in concrete. This phenomenon is supposed as the main reason causing the uncertainty of the bearing capacity deterioration of reinforced concrete structures. In order to analyze and predict the durability of reinforced concrete structures under chloride environment, the random features of chloride ions transport in concrete were studied in this research from in situ meso-structure of concrete. Based on X-ray CT technology, the spatial distribution of coarse aggregates and pores were recognized and extracted from a cylinder concrete specimen. In considering the influence of ITZ, the in situ mesostructure of concrete specimen was reconstructed to conduct a numerical simulation on the diffusion of chloride ions in concrete, which was verified through electronic microprobe technology. Then a stochastic study was performed to investigate the distribution of chloride ions concentration in space and time. The research indicates that the influence of coarse aggregate on chloride ions diffusion is the synthetic action of tortuosity and ITZ effect. The spatial distribution of coarse aggregates and pores is the main reason leading to the non-uniform distribution of chloride ions both in spatial and time scale. The chloride ions concentration under a certain time and the time under a certain concentration both satisfy the Lognormal distribution, which are accepted by Kolmogorov-Smirnov test and Chi-square test. This research provides an efficient method for obtain mass stochastic data from limited but representative samples, which lays a solid foundation for the investigation on the service properties of reinforced concrete structures.

축소(Ⅰ) 수정형 엔진의 연소 시험

  • Kim, Young-Han;Kim, Yong-Wook;Lee, Jae-Yong;Moon, Il-Yoon;Ko, Young-Sung;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.147-152
    • /
    • 2002
  • In the preceding tests of Sub.(Ⅰ) engines, it was observed that the heat resistant capability of the engines was not enough, and the design of Sub.(Ⅰ) engines was modified to satisfy the mission requirement. Sub.(Ⅰ) Mod. engines have three major design parameters - the arrangement of main injectors, the impinging angle of main injectors and thermal barrier coating. More than 20 experiments were carried out to evaluate engine performance and heat resistance capability with respect to design parameters. Analysing the result of Sub.(Ⅰ) and Sub.(Ⅰ) Mod. engine tests, it is found that the decreased impinging angle, adopting the H-type arrangement(rather than radial type arrangement), and adopting the thermal barrier coating can increase heat resistance capacity substantially. The result show that the performance variation by design change is below 5 percents and the radial type arrangement of injectors has higher performance than H-type. However, the performance of 15°impinging angle engine is higher than that of 20°impinging angle engine, which is inconsistent to our expectation. High frequency instabilities may cause such phenomenon, which will be verified by a series of tests.

  • PDF

Development and Evaluation of Large Scale Composite Lattice Structures (대형 복합재 격자구조체 개발 및 평가)

  • Kim, Donggeon;Doh, Youngdae;Kim, Gensang;Kim, Myungjoo;Lee, Sangwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.74-86
    • /
    • 2021
  • The composite lattice structure is a structure that supports the required load with the minimum weight and thickness. Composite lattice structure is manufactured by the filament winding process using impregnating high-strength carbon fiber with an epoxy resin. Filament winding process can laminate and manufacture only structurally necessary parts, composite lattice structure can be applied to aircraft fuselages, satellite and launch vehicles, and guided weapons to maximize weight reduction. In this paper, the development and evaluation of the composite lattice structure corresponding to the entire process from design, analysis, fabrication, and evaluation of large-scale cylindrical and conical composites lattice structure were performed. To be applicable to actual projectiles and guided weapons, we developed a cylindrical lattice structure with a diameter of 2,600 mm and a length of 2,000 mm, and a conical lattice structure with an upper diameter of 1,300 mm, a lower diameter of 2,500 mm, and a length of 900 mm. The performance of the developed composite lattice structure was evaluated through a load test.

Structural Optimization of Heat Dissipating Structure with Forced Convection (강제 대류가 있는 열소산 구조물의 구조최적설계)

  • Yoon, Gil-Ho;Kang, Nam-Cheol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2009
  • In this study, a new topology optimization method is developed to design heat-dissipating structure with forced convection. To cool down electrical devices or mechanical machines, two types of convection models have been widely used: the natural convection model with a large Archimedes number and the forced convection with a small Archimedes number. In these days, lots of engineering application areas such as electrochemical conversion devices (Fuel cell) or rocket propulsion engines adopt the forced convection to dissipate the generated heat. Therefore, to our knowledge, it becomes an important issue to design flow channels inside which the generated heat dissipate. Thus, this paper studies optimal topological designs considering fluid-heat interactions. To consider the effect of the advection in the heat transfer problem, the incompressible Navier-stokes equation is solved. This paper numerically studies the coupling phenomena and presents optimal channel design considering forced convection.

The Separating Cover Using an Explosive Bolt and Spring Lever (폭발볼트 및 스프링 레버를 이용한 발사관 분리식 덮개)

  • Choi, Won-Hong;Shin, Sang-Mok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.922-931
    • /
    • 2017
  • This research paper describes design procedures and those verification with multi-body dynamic analysis and an experiment for the development of an unprecedented type of canister cover, named as the separating cover. In order to overcome drawbacks from the precious rupture type and actuator driven cover, the separating cover was suggested. It has the simplest structure composed of the previously developed explosive bolt and a spring-lever driven system. First of all, mechanical feasibility with proposed design parameters based on mathematical modeling was confirmed through dynamic analysis and then its results showed good agreement with the followed empirical results acquired from a high speed camera. On top of that, a parametric study was conducted to identify the effect of each design parameter on separating performance. It is highly expected that this research contributes to provide military industries with a brand new canister cover having simplicity and cost efficiency and thus it will be very useful in MLRS(Multiple Launch Rocket System).

Ignition Test of an Oxidizer Rich Preburner (산화제과잉 예연소기 점화시험)

  • Moon, Il-Yoon;Moon, In-Sang;Yoo, Jae-Han;Jeon, Jae-Hyoung;Lee, Seon-Mi;Hong, Moon-Geun;Ha, Seong-Up;Kang, Sang-Hun;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.869-872
    • /
    • 2011
  • Ignition tests of an oxidizer rich preburner for a staged combustion cycle liquid rocket engine were performed to evaluate combustion performance. Design operation conditions of the tested oxidizer rich preburner are about 60 of OF ratio and 20 MPa of combustion pressure. The entire kerosene and some LOx injected into the mixing head is burned in combustion chamber and the remaining LOx injected through center holes of combustion chamber is vaporized. Full flow ignition method with hypergolic fuel was used. Each propellant was supplied in two stages for soft ignition. Test results, low frequency oscillation was occurred in low flow rate conditions under 45% of design flow rate. Stable ignition in the course of design combustion pressure was able to induce by minimization of low flow rate ignition region to escape low frequency oscillation.

  • PDF

Compressive Fracture Behavior of ATJ Graphite for Rocket Nozzle (로켓 노즐목에 이용되는 ATJ 그라파이트 압축거동 평가)

  • Choi, Hoon Seok;Seo, Bo Hwi;Kim, Jae Hoon;Moon, Soon Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1435-1440
    • /
    • 2014
  • The effects of the specimen size and temperature on the compressive strength of ATJ graphite were investigated. Compressive tests were conducted in accordance with ASTM C 965 at room temperature, $700^{\circ}C$ and $900^{\circ}C$. Three types of cylindrical specimen at room temperature were used in uniaxial tests, where the diameter-to - length ratios were one to two for the ASTM standard specimen, one to one for the Type I specimen, and one to 0.5 for the Type II specimen. Two kinds of cylindrical specimens, with and without antioxidant coating, were tested at elevated temperature. The Compressive strength of the expanded specimens(Type I, II) were slightly higher than that of standard specimen at room temperature. The compressive strength of a specimen with antioxidant coating increased as the temperature increased to $900^{\circ}C$. In contrast, that of the non-coated specimen decreases sharply due to the oxidation of the specimen.