• 제목/요약/키워드: Rocker-bogie

검색결과 11건 처리시간 0.031초

로커-보기 링크 구조를 갖는 전방향 이동로봇 시스템개발 (Development of Omni-Directional Mobile Robot System with Rocker-Bogie Link Structure)

  • 강택기;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.679-685
    • /
    • 2006
  • In this paper, development of an omni-directional mobile robot with rocker-bogie link structure is addressed. The overall mobile robot system consists of the robot mechanism with embedded control architecture, wireless communication with host graphic monitoring system, and the joy stick tole-controller. In the cluttered environment with various sizes of obstacles, the omni-directionality and the traversality are required for a mobile robot, so that the robot call go around or climb over the obstacles according to the size. The mobile robot mechanism developed in this paper has both of the omni-directionality and the traversality by 4 steerable driving wheels and the 2 additional passive omni-directional wheels linked with the rocker-bogie structure. The kinematic modeling for the mobile robot is described based on the well-known Sheth-Uicker convention and the instantaneous coordinate system.

Study on a Suspension of a Planetary Exploration Rover to Improve Driving Performance During Overcoming Obstacles

  • Eom, We-Sub;Kim, Youn-Kyu;Lee, Joo-Hee;Choi, Gi-Hyuk;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.381-387
    • /
    • 2012
  • The planetary exploration rover executes various missions after moving to the target point in an unknown environment in the shortest distance. Such missions include the researches for geological and climatic conditions as well as the existence of water or living creatures. If there is any obstacle on the way, it is detected by such sensors as ultrasonic sensor, infrared light sensor, stereo vision, and laser ranger finder. After the obtained data is transferred to the main controller of the rover, decisions can be made to either overcome or avoid the obstacle on the way based on the operating algorithm of the rover. All the planetary exploration rovers which have been developed until now receive the information of the height or width of the obstacle from such sensors before analyzing it in order to find out whether it is possible to overcome the obstacle or not. If it is decided to be better to overcome the obstacle in terms of the operating safety and the electric consumption of the rover, it is generally made to overcome it. Therefore, for the purpose of carrying out the planetary exploration task, it is necessary to design the proper suspension system of the rover which enables it to safely overcome any obstacle on the way on the surface in any unknown environment. This study focuses on the design of the new double 4-bar linkage type of suspension system applied to the Korea Aerospace Research Institute rover (a tentatively name) that is currently in the process of development by our institute in order to develop the planetary exploration rover which absolutely requires the capacity of overcoming any obstacle. Throughout this study, the negative moment which harms the capacity of the rover for overcoming an obstacle was induced through the dynamical modeling process for the rocker-bogie applied to the Mars exploration rover of the US and the improved version of rocker-bogie as well as the suggested double 4-bar linkage type of suspension system. Also, based on the height of the obstacle, a simulation was carried out for the negative moment of the suspension system before the excellence of the suspension system suggested through the comparison of responding characteristics was proved.

회피 기능을 가진 장애물 극복 추종 주행 로봇 (Robot that can be driven on irregular roads with tracking and obstacl avoidance functions)

  • 김성은;안지은;박서현;전다예
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.1041-1042
    • /
    • 2023
  • 본 논문에서는 고르지 않은 도로에서 사용자를 인식하고 따라다니며, 적재물을 안정적으로 운반하는 로봇을 제안합니다. 기존의 바퀴 구동 방식은 계단이나 울퉁불퉁한 지형에 부딪혔을 때 주행이 제한적입니다. 이를 해결하기 위해 저희는 로커-보기(rocker-bogie) 메커니즘을 적용했습니다. 비전을 통해 사용자를 특정하고, 크기에 따라 속도를 조절하며 추종합니다. 라이다는 주변의 장애물을 감지, 회피, 주행하는 데 사용되었으며, 가속도센서와 리니어 모터를 사용하여 밸런싱 기능을 구현했습니다.

Study on an 8-Wheel Suspension to Enhance the Hill-Climbing Performance for a Planetary Exploration Rover

  • Eom, We-Sub;Lee, Joo-Hee;Gong, Hyun-Cheol;Choi, Gi-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권4호
    • /
    • pp.347-351
    • /
    • 2014
  • Planetary exploration rovers are likely to make a trip on a winding and sloping road of irregular surfaces to the destination in order to accomplish scientific missions. One of the key technologies for rovers is a suspension for traveling and performing exploration missions; the suspension is an essential area of technology for a stable movement of a rover. In this study, an 8-wheel suspension is designed to enable efficient climbing of slopes on a passage to the destination. For the two front wheels among the eight wheels, the moment at the pivot connecting two wheels is derived when the distance between the wheels and the torque of wheels are same. A test experiment was performed to compare the magnitude of moment according to the change in tilt angle and the position of the pivot. Finally, a suspension design considering the position of the pivot was proposed to enhance the hill-climbing performance.