• 제목/요약/키워드: Rockbursts

검색결과 7건 처리시간 0.019초

산악 TBM 터널에서 발생한 암반파열 현상에 대한 연구 (A Study of Rockbursts Within a Deep Mountain TBM Tunnel)

  • Lee, Seong-Min;Park, Boo-Seong
    • 한국지반공학회논문집
    • /
    • 제19권6호
    • /
    • pp.39-47
    • /
    • 2003
  • 암반파열 현상은 암반 내에 축적된 변형에너지의 급작스러운 방출로 인해 발생한다. 심부 광산에서는 이런 현상이 자주 발생하여 주요한 재해 중 하나로 다루어졌으나, 터널에서는 극히 드물게 나타나는 현상이었다. 따라서 터널 내암반파열 현상에 대한 국내역사는 짧은 편이며, 정보도 제한적이어서 그와 관련된 연구는 거의 없는 실정이었다. 그러나 최근에는 터널의 심도가 깊어짐에 따라 터널내 암반파열 현상이 종종 보고되고 있어 터널의 안정성 문제뿐만 아니라 시공 중 재해 측면에서 볼 때 이에 대한 연구가 절실히 필요할 것으로 사료된다. 본 연구에서는 TBM 터널에서 취득한 암반파열현상 관련 자료의 분석을 통하여 그 현상을 포괄적으로 이해하는 방법을 제시하고자 하였다. 암반파열이 발생한 본 연구 터널의 현장자료 분석결과에 의하면, 대부분의 암반파열은 터널의 막장과 운전석 내에서 주로 발생하였으며, 일부 구간에서는 파열현상이 20일 이상 지속되기도 하였다. 또한 본 터널에서의 암반파열은 터널막장, 터널측벽 및 터널천장 등 터널의 모든 주변에서 발생하였고, 그 파열 깊이는 대부분 100cm 이하인 것으로 조사되었다. 본 연구에서는 이러한 암반파열 자료를 이용하여 암반파열 가능성을 취성도와 일축압축강도를 이용해 평가할 수 있도록 새로운 규준을 제시하였으며, RMR, 굴착공법, 굴착속도 및 터널심도 등이 서로 연관되어 암반파열 현상에 큰 영향을 준다고 판단된다.

Experimental investigation of predicting rockburst using Bayesian model

  • Wang, Chunlai;Chuai, Xiaosheng;Shi, Feng;Gao, Ansen;Bao, Tiancai
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1153-1160
    • /
    • 2018
  • Rockbursts, catastrophic events involving the violent release of elastic energy stored in rock features, remain a worldwide challenge for geoengineering. Especially at deep-mining sites, rockbursts can occur in hard, high-stress, brittle rock zones, and the associated risk depends on such factors as mining activity and the stress on surrounding rocks. Rockbursts are often sudden and destructive, but there is still no unified standard for predicting them. Based on previous studies, a new Bayesian multi-index model was introduced to predict and evaluate rockbursts. In this method, the rock strength index, energy release index, and surrounding rock stress are the basic factors. Values from 18 rock samples were obtained, and the potential rockburst risks were evaluated. The rockburst tendencies of the samples were modelled using three existing methods. The results were compared with those obtained by the new Bayesian model, which was observed to predict rockbursts more effectively than the current methods.

A stress model reflecting the effect of the friction angle on rockbursts in coal mines

  • Fan, Jinyang;Chen, Jie;Jiang, Deyi;Wu, Jianxun;Shu, Cai;Liu, Wei
    • Geomechanics and Engineering
    • /
    • 제18권1호
    • /
    • pp.21-27
    • /
    • 2019
  • Rockburst disasters pose serious threat to mining safety and underground excavation, especially in China, resulting in massive life-wealth loss and even compulsive closed-down of some coal mines. To investigate the mechanism of rockbursts that occur under a state of static forces, a stress model with sidewall as prototype was developed and verified by a group of laboratory experiments and numerical simulations. In this model, roadway sidewall was simplified as a square plate with axial compression and end (horizontal) restraints. The stress field was solved via the Airy stress function. To track the "closeness degree" of the stress state approaching the yield limit, an unbalanced force F was defined based on the Mohr-Coulomb yield criterion. The distribution of the unbalanced force in the plane model indicated that only the friction angle above a critical value could cause the first failure on the coal in the deeper of the sidewall, inducing the occurrence of rockbursts. The laboratory tests reproduced the rockburst process, which was similar to the prediction from the theoretical model, numerical simulation and some disaster scenes.

지진모멘트 Tensor와 전환 : 개요 (Seismic Moment Tensor and Its Inversion : An Overview)

  • 김소구;우종량
    • 지질공학
    • /
    • 제5권2호
    • /
    • pp.215-231
    • /
    • 1995
  • 지진 모멘트 tensor와 진원함수가 물리학자 방식으로 소개된다. 1970년도 이후에 개발된 지진모멘트 텐사와 진원 함수는 현대지진학에서의 매우 중요한 역할을 하여 왔다. 현대 지진학 언어로 지진 진원 기술은 지하인공폭발, 광산 암석 붕괴, 저수지 유도지진과 같은 인공지진은 물론 공유 지진의 물리현상을 연구하게 하여 왔다. 더우기 고전 지진학에서 중요하지 않았고 고전 지진학에 포함되어 있지 않았던 새로운 개념, 디지털 지진학 관측은 더욱 중요성을 띄게 되었다. 지진학의 기초, 특히 지진진원의 물리학을 응용물리학의 일부분으로 다룰 때가 왔다고 본다.

  • PDF

Experimental study of rockburst under true-triaxial gradient loading conditions

  • Liu, Xiqi;Xia, Yuanyou;Lin, Manqing;Benzerzour, Mahfoud
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.481-492
    • /
    • 2019
  • Due to the underground openings, the tangentially concentrated stress of the tunnel remains larger at excavation boundary and decreases toward the interior of the surrounding rock with a certain gradient. In order to study the effect of different gradient stress on rockburst, the true-triaxial gradient and hydraulic-pneumatic combined test apparatus were carried out to simulate the rockburst processes. Under the different gradient stress conditions, the rock-like specimen (gypsum) was tested independently through three principal stress directions loading--fast unloading of single surface--top gradient and hydraulic-pneumatic combined loading, which systematically analyzed the macro-mesoscopic damage phenomena, force characteristics and acoustic emission (AE) signals of the specimen during rockburst. The experimental results indicated that the rockburst test under the gradient and hydraulic-pneumatic combined loading conditions could perfectly reflect the rockburst processes and their stress characteristics; Relatively high stress loading could cause specimen failure, but could not determine its mode. The rockburst under the action of gradient stress suggested that the failure mode of specimen mainly depended on the stress gradient. When the stress gradient was lower, progressive and static spalling failure occured and the rockburst grades were relatively slight. On the other hand, shear fractures occurred in rockbursts accounted for increasingly large proportion as the stress gradient increased and the rockburst occurred more intensely and suddenly, the progressive failure process became unconspicuous, and the rockburst grades were moderate or even stronger.

The mechanism of rockburst-outburst coupling disaster considering the coal-rock combination: An experiment study

  • Du, Feng;Wang, Kai;Guo, Yangyang;Wang, Gongda;Wang, Liang;Wang, Yanhai
    • Geomechanics and Engineering
    • /
    • 제22권3호
    • /
    • pp.255-264
    • /
    • 2020
  • With the ongoing development of deep mining of coal resources, some coal mine dynamic disasters have exhibited characteristics of both coal-gas outbursts and rockbursts. Therefore, research is required on the mechanism of rockburst-outburst coupling disaster. In this study, the failure characteristics of coal-rock combination structures were investigated using lab-scale physical simulation experiments. The energy criterion of the rockburst-outburst coupling disaster was obtained, and the mechanism of the disaster induced by the gas-solid coupling instability of the coal-rock combination structure was determined. The experimental results indicate that the damage of the coal-rock structure is significantly different from that of a coal body. The influence of the coal-rock structure should be considered in the study of rockburst-outburst coupling disaster. The deformation degree of the roof is controlled by the more significant main role of the gas pressure and the difference in the strength between the rock body and the coal body. The outburst holes and spall characteristics of the coal body after the failure of the coal-rock structure are strongly affected by the difference in strength between the roof and the coal body. The research results provide an in-depth understanding of the mechanism of rockburst-outburst coupling disasters in deep mining.

Modeling of a rockburst related to anomalously low friction effects in great depth

  • Zhan, J.W.;Jin, G.X.;Xu, C.S.;Yang, H.Q.;Liu, J.F.;Zhang, X.D.
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.113-131
    • /
    • 2022
  • A rockburst is a common disaster in deep-tunnel excavation engineering, especially for high-geostress areas. An anomalously low friction effect is one of the most important inducements of rockbursts. To elucidate the correlation between an anomalously low friction effect and a rockburst, we establish a two-dimensional prediction model that considers the discontinuous structure of a rock mass. The degree of freedom of the rotation angle is introduced, thus the motion equations of the blocks under the influence of a transient disturbing force are acquired according to the interactions of the blocks. Based on the two-dimensional discontinuous block model of deep rock mass, a rockburst prediction model is established, and the initiation process of ultra-low friction rockburst is analyzed. In addition, the intensity of a rockburst, including the location, depth, area, and velocity of ejection fragments, can be determined quantitatively using the proposed prediction model. Then, through a specific example, the effects of geomechanical parameters such as the different principal stress ratios, the material properties, a dip of principal stress on the occurrence form and range of rockburst are analyzed. The results indicate that under dynamic disturbance, stress variation on the structural surface in a deep rock mass may directly give rise to a rockburst. The formation of rockburst is characterized by three stages: the appearance of cracks that result from the tension or compression failure of the deformation block, the transformation of strain energy of rock blocks to kinetic energy, and the ejection of some of the free blocks from the surrounding rock mass. Finally, the two-dimensional rockburst prediction model is applied to the construction drainage tunnel project of Jinping II hydropower station. Through the comparison with the field measured rockburst data and UDEC simulation results, it shows that the model in this paper is in good agreement with the actual working conditions, which verifies the accuracy of the model in this paper.