• Title/Summary/Keyword: Rock types

Search Result 813, Processing Time 0.029 seconds

Thermal Properties of Rocks in the Republic of Korea (한국의 암석 열물성)

  • Park, Jeong-Min;Kim, Hyoung-Chan;Lee, Young-Min;Shim, Byoung-Ohan;Song, Moo-Young
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.591-598
    • /
    • 2009
  • We made 2511 thermal property measurements on igneous, metamorphic, and sedimentary rock samples from Korea. The average thermal conductivities of igneous, metamorphic, and sedimentary rocks are 3.10 W/m-K, 3.76 W/m-K, and 3.54 W/m-K, respectively. Igneous rock can be classified into pluton, hypabyssal rock, and volconic rock; the average thermal conductivities of those rock types are 3.16 W/m-K, 3.26 W/m-K, and 2.77 W/m-K, respectively. Nonclastic sedimentary rock has higher thermal conductivity than clastic sedimentary rock. Thermal conductivity of Palezoic era rock is higher than Mesozoic era rock, because dominant mineral contents play an important role in the determination of thermal conductivity. Thermal conductivity of rocks is influenced by porosity. Therefore thermal conductivity of sedimentary rocks generally decreases with increasing porosity. Thermal conductivity and thermal diffusivity show linear correlation, its correlation coefficient of igneous, metamorphic, and sedimentary rocks are 0.775, 0.855, and 0.876, respectively.

Design of Sedimentary Rock Slopes in River Diversion Works (가배수로 터널공사의 퇴적암 사면 안정화 설계)

  • Jee, Wang-Ruel
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.17-32
    • /
    • 1998
  • The Bakun hydroelectric project includes the construction of a hydroelectric power plant with an installed capacity of 2,520MW and a power transmission system connecting to the existing transmission networks in Sarawak and Western Malaysia, The power station will consist of a 210m height concrete faced rockfill dam. During the construction of the dam and the power facilities the Balui river has to be diverted by three diversion tunnels with a length of some 1,400m each. The inner diameter of the tunnels is 12m and the tunnel width is 16m at the portal area. This paper describes the stability analysis and design methods for the open cut rock slopes in the inlet and outlet area of the diversion tunnels. The geotechnical parameters employed in stability calculations were given as a function of four. defined Rock Mass Types (RMT) which were based on RMR system from Bieniawski. The stability calculations procedure of the rock slopes are divided into two stages. In the first stage, it is calculated for the stability of each 'global' slope without any rock support and shotcrete system. In the second stage, it is calculated for each 'local'slope stability with berms and supported with rock bolts and shotcrete. The monitoring instrumentation was performed continuously and some of the design modification was carried out in order to increase the safety of failed area based on the unforeseen geological risks during the open cut excavation.

  • PDF

Calculation of Deterioration Depth of Major Rock Type Slopes caused by Freezing-Thawing in Korea (국내 주요 암종별 사면의 동결-융해에 의한 열화심도 계산)

  • Kwon, O-Il;Baek, Yong;Yim, Sung-Bin;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.359-365
    • /
    • 2007
  • Freezing and thawing cycle is one of the major weathering-induced factors in the mechanical weathering of the rock mass. This natural process accelerates rock weathering process by breaking down the parent rock materials and makes soil or weathered rock formation in a rock slope surface zone. It can also cause reduction of the shear strength in slopes. It is important to calculate the deterioration depth caused by freezing-thawing for a slope stability analysis. In this study, deterioration depths of rock slope due to freezing-thawing were calculated using the 1-D heat conductivity equation. The temperature distribution analysis was also carried out using collected temperature distribution data for last five years of several major cities in Korea. The analysis was performed based on the distributed rock types in study areas. Thermal conductivities, specific heats and densities of the calculation rocks are tested in the laboratory. They are thermal properties of rocks as input parameters for calculating deterioration depths. Finally, the paper is showing the calculated deterioration depths of each rock type slopes in several major cities of Korea.

Thermal Conductivity Measurement of Rock Cores from Ulleung Island Using PEDB System at Room Temperature (상온 환경에서 PEDB를 이용한 울릉도 시추코어의 열전도도 예비 측정)

  • Lee, Sang Kyu;Lee, Tae Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.121-130
    • /
    • 2016
  • Several factors are discussed that should be considered in measuring thermal conductivity of rock cores with a PEDB (potable electronic divided bar) system, which is relatively accurate and easy to operate, and can measure the thermal conductivity of rock cores for various diameters. Then the system is applied to measure thermal conductivity of 70 rock cores from Ulleung Island. Air temperature affects most on the thermal conductivity measurements, so that it is very important to minimize the temperature change during the measurement. Other factors such as the temperature of heat source, averaging time window on the thermal conductivity measurements do not affect much compared to air temperature. Slightly higher thermal conductivity is measured when using the thermal contact paste between the sample and heat source or heat sink. Especially, rock cores with irregular surface showed bigger difference. Repeatability showed less than ${\pm}0.3%$ for standard samples and less than ${\pm}4%$ for rock samples, respectively, when the room temperature changes within $1^{\circ}C$ during the measurements. Thermal conductivity of the rock cores from Ulleung Island roughly increases as depth increases but does not show any dependency on the rock types.

Weathering of Rock Specimens Exposed to Recurrent Freezing and Thawing Cycles (동결-융해 풍화에 의한 암석 물성 변화 양상과 추정에 관한 연구)

  • Ryu, Sung-Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.276-283
    • /
    • 2012
  • Changes in rock properties due to freezing and thawing cycles ranging from $-20^{\circ}C$ to $10^{\circ}C$ were checked for the typical Korean rocks: granite (weathered), limestone, sandstone, tuff, shale and basalt. The porosity, seismic velocity, shore hardness and specific gravity were measured every 10 cycles for each type of rock up to 40 cycles. The specific gravity was rarely changed. Granite (w), shale and basalt decreased gradually in their shore hardness and seismic velocity values, these values for limestone, sandstone and tuff changed only a very little. The porosity increased in the granite (w), shale and basalt, whereas in the others it did not change. Due to the low tensile strength with high porosity, granite (w), shale and basalt were susceptible to the F-T cycles. A linear regression equation was calculated based on the experiment results according to properties and types of rock. The relationship between the freeze-thaw sensitivity (=initial porosity/initial tensile strength) and the coefficients of the regression equation was examined. With additional experimental data, the coefficients of the regression equation can be estimated using the F-T sensitivity. This makes it possible to predict the properties of rock as affected by freeze-thaw weathering by only measuring the initial properties without knowledge of the regression equation coefficients for each type of rock.

DEM-based numerical study on discharge behavior of EPB-TBM screw conveyor for rock (EPB-TBM 암반굴착시 스크류컨베이어의 배토 거동에 대한 DEM 기반 수치해석적 연구)

  • Lee, Gi-Jun;Kwon, Tae-Hyuk;Kim, Huntae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.127-136
    • /
    • 2019
  • Tunnel construction by TBMs should be supported by the performance of a screw conveyor in order to obtain the optimum penetration rate, so studies related to the screw conveyor performance have been being conducted. Compared to the study on the performance of the screw conveyor for the soil, however, the research on the performance of the screw conveyor for the rock is insufficient. Considering the domestic tunnel sites with more rock layers than soil layers, simulation of discharge of 6 types of rock chips by the screw conveyor was conducted using DEM. Regardless of the shape and volume of the rock chips, the discharge rates of the rock chips by the parallel placed screw conveyor at a speed of 10 RPM in the same rock mass were about 20% (standard deviation: 1.3%) of the maximum volume of discharge rate by the screw conveyor. It is expected that this study can be used as a reference material for screw conveyor design and operation in TBM excavations in rock masses.

Sedimentary Petrology and Paleo-oceanography of the Hoedongri Formation, Jeongseon,-Kun, Kangweon-Do, Korea (江原道 旌善郡 檜洞理一帶의 石灰巖層(檜洞理層)에 대한 古海洋學的 (堆積巖石學的) 硏究)

  • 박용안;장진호
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.40-48
    • /
    • 1985
  • The depositional conditions and paleo-oceanography of the Hoedongri Formation(Silurian) distributed in the Hoedongri, Jeongseon-Kun, Kangweon-Do, Korea were investigated. The major rock types and facies of the Hoedongri Formation consist of mudstone and wackestone facies in which the content of insoluble residues is relatively high (average. 17%). The sedimentary structures observed in the Hoedongri Formation being helpful to the interpretation of depositional conditions are; crypt-algalaminates, bird's eye structures, evaporite pseudomorphs, dolomite mottle structures, detrital quartz pockets and cross bedding. Based on the rock types, facies and sedimentary structures of the Hoedongri Formation, it seems that the Hoedongri Formation might be deposited in a saline supratidal and intertidal zone.

A Numerical Analysis of the Distribution of Temperature and Combustio Products I case of Compartment Fire (폐쇄공간 화재 발생시 온도 및 연소산화물의 분포에 관한 모델 해석)

  • 차형석;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.8-16
    • /
    • 1998
  • The first purpose of this study is to verify the application of computer modelling to a enclosed space fire. The second one is to determine temperature distribution for the three different ventilation types in case of a enclosed space fire. The third one is to find out the ventilation direction and ventilation quantity to remove effectively heat and combustion products generated by a fire in variable air volume(VAV) system. Firstly, compared with experimental results of Lawrence Livermore National Laboratory(LLNL), numerical results show good agreements. Secondly, among three different ventilation types, the numerical analyses show the highest temperature distribution in occupied zone(up to 1.8 m from bottom) from firing moment to 100 sec. when supply ducts are placed in ceiling and extract duct is placed close to the bottom on side walls. This is due to disadvantageous position of extract duct in ventilating high temperature air which rise because of buoyancy force. Thirdly, this study finds out effective ventilation direction and ventilation quantity to remove heat and combustion products generated by a fire by using VAV system. $CO_2$ concentration is used as a fire fume removal index. As soon as a fire happens, ventilation direction is changed in order to gather and drive out fire fumes. In case of three times ventilation quantity of ordinary one, $CO_2$ concentration and temperature have begun to decrease at 120 sec. after firing, i.e.fire fumes have begun to be removed.

  • PDF

A Study on Trail Deteriorations in Campus Forest of Chungnam National University (충남대학교 연습림의 산책로 훼손에 관한 연구)

  • Lee, Joon Woo;Park, Bum-Jin;Choi, Yeon-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.1
    • /
    • pp.26-32
    • /
    • 1998
  • Three major trails of campus forest in Chungnam National University were selected to investigate the use impacts on environmental deterioration of trail according to the different amount of use. Rook-exposed, root-exposed, deepening, widening, diverged points as the deterioration types of trail which were surveyed at total of 92 points in major trail of campus forest in Chungnam National University. Major deterioration types of trail were widening, rock-exposure, root-exposure, in order of frequency. And trail conditions (trail slope and maximum depth) of deteriorated points were significantly different from those of non-deteriorated points.

  • PDF

Consideration of Failure Type on the Ground Excavation (지하굴착에 따른 붕괴유형에 대한 고찰)

  • Lee, Jung-Jae;Jung, Kyung-Sik;Lee, Chang-No
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.660-670
    • /
    • 2009
  • Neighboring construction becomes mainstream of Ground excavation in downtown area. This causes the displacement, deformation, stress condition, etc of the ground surroundings. Therefore Neighboring construction have an effect on Neighboring structure. All these years a lot of Neighboring construction carried out, and the accumulation of technology also get accomplished. But earth retaining structure collapse happens yet. Types of earth retaining structure collapse are 12. 1. Failure of anchor or strut system, 2. Insufficiency of penetration, 3. H-pile Failure on excessive bending moment, 4. Slope sliding failure, 5. Excessive settlement of the back, 6. Deflection of H-pile, 7. Joint failure of coupled H-pile, 8. Rock failure when H-pile penetration is rock mass, 9. Plane arrangement of support systems are mechanically weak, 10. Boiling, 11. Heaving, 12. Over excavation. But field collapses are difficult for classification according to the type, because collapse process are complex with various types. When we consider the 12 collapse field, insufficient recognition of ground condition is 4 case. Thorough construction management prevents from fault construction. For limitations of soil survey, It is difficult to estimate ground condition exactly. Therefore, it should estimate the safety of earth retaining system, plan for necessary reinforcement, according to measurement and observation continuously.

  • PDF