• Title/Summary/Keyword: Rock specimens

Search Result 292, Processing Time 0.026 seconds

Scaptognathus magnus (Acari: Halacaridae), a New Record from Korea

  • Lee, Jimin;Shin, Jong Hak;Chang, Cheon Young
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.2
    • /
    • pp.175-181
    • /
    • 2020
  • An arenicolous halacarid, Scaptognathus magnus Abé is first recorded from Korea, which was collected from littoral coarse sandy bottom around Simnibawi Rock off Gangreung in the east coast of South Korea. The remarkable characteristics of this species are large body with idiosoma more than 470 ㎛ long, nearly trapezoidal anterior dorsal plate, and a unique chaetotaxy of bipectinate setae 5-3-3-3 on tibiae I-IV. The characteristics of Korean specimens coincide well with the original description from Hokkaido, Japan, except for the number of parambulacral setae on tarsus III and the weak median claws. Detailed illustrations and scanning electron microscope photographs based on Korean specimens are provided.

Synthesis and Characterization of a Novel Silicon-Containing Epoxy Resin

  • Park Soo-Jin;Jin Fan-Long;Lee Jae-Rock
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.8-13
    • /
    • 2005
  • A novel silicon-containing epoxy resin, the diglycidylether of bisphenol A-silicon (DGEBA-Si), was synthesized and characterized. The properties of the DGEBA-Si epoxy resin cured with 4,4-diaminodiphenyl methane (DDM), including its cure behavior, glass transition temperature, thermal stability, and mechanical strength were investigated. The char yield of the DGEBA-Si/DDM system was higher than that of a commercial DGEBA/DDM system, indicating that the DGEBA-Si epoxy resin showed good flame-retardance. The cured DGEBA-Si/DDM specimens possessed lower glass transition temperatures and higher mechanical properties than DGEBA/DDM specimens. These features were attributed to the introduction of siloxane groups into the main chain of the epoxy resin, which resulted in the improved flexibility of the cured DGEBA-Si/DDM system.

On geometry dependent R-curve from size effect law for concrete-like quasibrittle materials

  • Zhao, Yan-Hua;Chang, Jian-Mei;Gao, Hong-Bo
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.673-686
    • /
    • 2015
  • R-curve based on the size effect law previously developed for geometrically similar specimens (geometry type III) is extended to geometries with variable depth (geometry type I) as well as with variable notch (geometry type II), where the R-curve is defined as the envelope of the family of critical strain energy release rates from specimens of different sizes. The results show that the extended R-curve for type I tends to be the same for different specimen configurations, while it is greatly dependent on specimen geometry in terms of the initial crack length. Furthermore, the predicted load-deflection responses from the suggested R-curve are found to agree well with the testing results on concrete and rock materials. Besides, maximum loads for type II specimen are predicted well from the extended R-curve.

Study on fracture mechanics of granite specimens with different precast notch depths based on DIC method

  • Shuwen Cao;Hao Shu
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.393-400
    • /
    • 2023
  • Displacements near crack and stress intensity factor (SIF) are key parameters to solve rock failure issue when using fracture mechanics. In order to study the horizontal displacement and stress intensity factor of the mode I fracture, a series of three-point bending tests of granite specimens with central notch were carried out. The evolution of horizontal displacements of precast notch and crack tip opening displacements (CTOD) were analyzed based on the digital image correlation (DIC) method. Stress intensity factors for three-point bending beams with arbitrary span-to-width ratios(S/W) were calculated by using the WU-Carlsson analytical weight function for edge-crack finite width plate and the analytical solution of un-cracked stress by Filon. The present study provides a high efficient and accurate method for fracture mechanics analysis of the three-point bending granite beams.

Polygonal Grain-Based Distinct Element Modelling of Mechanical Characteristics and Transverse Isotropy of Rock (다각형 입자 기반 개별요소모델을 통한 암석의 역학적 특성과 횡등방성 모사)

  • Park, Jung-Wook;Park, Chan;Ryu, Dongwoo;Choi, Byung-Hee;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.235-252
    • /
    • 2016
  • This study presents a methodology to reproduce the mechanical behavior of isotropic or transversely isotropic rock using the polygonal grain-based distinct element model. A numerical technique to monitor the evolution of micro-cracks during the simulation was developed in the present study, which enabled us to examine the contribution of tensile cracking and shear cracking to the progressive process of the failure. The numerical results demonstrated good agreement with general observations from rock specimens in terms of the behavior and the evolution of micro-cracks, suggesting the capability of the model to represent the mechanical behavior of rock. We also carried out a parametric study as a fundamental work to examine the relationships between the microscopic properties of the constituents and the macroscopic behavior of the model. Depending on the micro-properties, the model exhibited a variety of responses to the external load in terms of the strength and deformation characteristics. In addition, a numerical technique to reproduce the transversely isotropic rock was suggested and applied to Asan gneiss from Korea. The behavior of the numerical model was in good agreement with the results obtained in the laboratory-scale experiments of the rock.

Evaluating the Effectiveness of an Artificial Intelligence Model for Classification of Basic Volcanic Rocks Based on Polarized Microscope Image (편광현미경 이미지 기반 염기성 화산암 분류를 위한 인공지능 모델의 효용성 평가)

  • Sim, Ho;Jung, Wonwoo;Hong, Seongsik;Seo, Jaewon;Park, Changyun;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.309-316
    • /
    • 2022
  • In order to minimize the human and time consumption required for rock classification, research on rock classification using artificial intelligence (AI) has recently developed. In this study, basic volcanic rocks were subdivided by using polarizing microscope thin section images. A convolutional neural network (CNN) model based on Tensorflow and Keras libraries was self-producted for rock classification. A total of 720 images of olivine basalt, basaltic andesite, olivine tholeiite, trachytic olivine basalt reference specimens were mounted with open nicol, cross nicol, and adding gypsum plates, and trained at the training : test = 7 : 3 ratio. As a result of machine learning, the classification accuracy was over 80-90%. When we confirmed the classification accuracy of each AI model, it is expected that the rock classification method of this model will not be much different from the rock classification process of a geologist. Furthermore, if not only this model but also models that subdivide more diverse rock types are produced and integrated, the AI model that satisfies both the speed of data classification and the accessibility of non-experts can be developed, thereby providing a new framework for basic petrology research.

A Study on the Correlation between Uniaxial Compressive Strength of Rock by Elastic Wave Velocity and Elastic Modulus of Granite in Seoul and Gyeonggi Region (서울·경기지역 화강암의 탄성파속도와 탄성계수에 의한 암석의 일축압축강도와의 상관성 연구)

  • Son, In-Hwan;Kim, Byong-kuk;Lee, Byok-Kyu;Jang, Seung-jin;Lee, Su-Gon
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.249-258
    • /
    • 2019
  • Purpose: The purpose of this study is to attain the correlation analysis and thereby to deduce the uniaxial compressive strength of rock specimens through the elastic wave velocity and the elastic modulus among the physical characteristics measured from the rock specimens collected during drilling investigations in Seoul and Gyeonggi region. Method: Experiments were conducted in the laboratory with 119 granite specimens in order to derive the correlation between the compressive strength of the rocks and elastic wave velocity and elastic modulus. Results: In the case of granite, the results of the analysis of the interaction between the compressive strength of a rock and the elastic wave velocity and elastic modulus were found to be less reliable in the relation equation as a whole. And it is believed that the estimation of the compressive strength by the elastic wave velocity and elastic modulus is less used because of the composition of non-homogeneous particles of granite. Conclusion: In this study, the analysis of correlation between the compressive strength of a rock and the elastic wave velocity and elastic modulus was performed with simple regression analysis and multiple regression analysis. The coefficient determination ($R^2$) of simple regression analysis was shown between 0.61 and 0.67. Multiple regression analysis was 0.71. Thus, using multiple regression analysis when estimating compressive strength can increase the reliability of the correlation. Also, in the future, a variety of statistical analysis techniques such as recovery analysis, and artificial neural network analysis, and big data analysis can lead to more reliable results when estimating the compressive sterength of a rock based on the elastic wave velocity and elastic modulus.

A Study on The Stiffened Barrier Panel Against Rock Fall in Rural Hillside (산간지역 낙석 방지책 보강 방안에 관한 연구)

  • Jeong, Byung Joo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.7 no.1
    • /
    • pp.129-136
    • /
    • 2005
  • In this paper, barrier panels against falling stones have been studied experimentally with various specimens. Test results show that stiffened barrier panels show more sufficient capacity than unstiffened barrier. Each type barrier panel can be used for various situations. New barrier panel is good for increasing strength and improving environment and maintaining cost down.

  • PDF

Physical Properties of Rocks at the Gagok Skarn Deposit (가곡 스카른광상 암석의 물리적 특성)

  • Shin, Seungwook;Park, Samgyu;Kim, Hyoung-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.180-189
    • /
    • 2013
  • Geophysical exploration is widely used to develop strategic mineral resources in the world because of its efficient method in detecting mineralized zones in the metallic ore deposit. It is important to understand the physical properties of the stratum so that geophysical data can be more accurately interpreted. This paper is to comprehend physical properties of the rock at the Gagok mine, a typical skarn deposit in Korea. Thus, laboratory tests were conducted on specimens of ore and host rocks which were collected from rock outcrops and drill cores at the Gagok mine. Using the measurement system of rock physical property, we investigated the density, magnetic susceptibility, resistivity, and spectral induced polarization. According to the results, all physical properties of specimens had wide differences depending on contents of ore minerals, which are formed by skarnization. Especially, using the chargeability and time constant from the calculated spectral induced polarization data by the Cole-Cole inversion, we could estimate the volume contents as well as the grain size of the sulfide minerals. Therefore, the spectral induced polarization technique may be considered a useful method when exploring metallic ore deposit with sulfide minerals.

Engineering Geological Characteristics of Freeze-Thaw Weathered Gneiss in the Wonju Area, Korea

  • Um, Jeong-Gi;Woo, Ik;Park, Hyuck Jin
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.161-169
    • /
    • 2014
  • We present the results of an experimental physical weathering study that focuses on fresh and slightly weathered gneiss samples from the Wonju area of Korea. The study investigated changes in the physico-mechanical properties of these samples during accelerated laboratory-based weathering, including analyses of microfracture formation. The deteriorated samples used in the study were subjected to 100-150 freeze-thaw cycles, with index properties and microfracture geometries measured between each cycle. Each complete freeze-thaw cycle lasted 24 hours, and consisted of 2 hours of saturation in a vacuum chamber, 8 hours of freezing at $-21^{\circ}C{\pm}1^{\circ}C$, and 14 hours of thawing at room temperature. Specific gravity and seismic velocity values were negatively correlated with the number of freeze-thaw cycles, whereas absorption values tended to increase. The amount of deterioration of the rock samples was dependent on the degree of weathering of the rock prior to the start of the analysis. Absorption, specific gravity, and seismic velocity values can be used to infer the amount of physical weathering experienced by a gneiss in the study area. The sizes and density of microfracture in the rock specimens varied with the number of freeze-thaw cycles. We found that box fractal dimensions can be used to quantify the formation and propagation of microfracture in the samples. In addition, these box fractal dimensions can be used as a weathering index for the mid-and long-term prediction of rock weathering. The present results indicate that accelerated-weathering analysis can provide a detailed overview of the weathering characteristics of deteriorated rocks.