• Title/Summary/Keyword: Rock masses

Search Result 257, Processing Time 0.021 seconds

A Boundary Element Analysis for Damage and Failure Process of Brittle Rock using ERACOD (FRACOD를 이용한 취성 암석의 손상 및 파괴에 대한 경계요소 해석)

  • ;Baotang Shen;Ove Stephansson
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.248-260
    • /
    • 2004
  • Damage in brittle rock due to stress increase starts from initiation of microcracks, and then results in failure by forming macro failure planes due to propagation and coalescence of these discrete cracks. Conventionally, continuum approaches using macro-failure criteria or a number of elasto-plastic models have been major solution to implement rock damage and failure. However, actual brittle failure processes can be better described in phenomenological approach if initiation and propagation of discrete fractures are explicitly considered. This study presents damage and failure process of rock using a boundary element code, FRACOD, which has been developed to model fracturing process of rocks. Through a series of numerical uniaxial compressive tests, the feasibility of the developed model was verified, and realistic rock failure process was reproduced considering scale effects in rocks. In addition, the fracturing process and the corresponding rock damage in the vicinity of deep shaft in rock mass were presented as an application of this approach. This approach will be expected to contribute to finding better engineering solutions for the analysis of stability problems in brittle rock masses.

Behavior of Bond-type Shallow Anchors in Rock Masses ( I ) - Metamorphic Rock (gneiss) at Taean Test Site - (암반에 근입된 부착형 앵커의 거동특성 (I) - 태안지역 편마암 -)

  • Kim, Dae-Hong;Lee, Dae-Soo;Chun, Byung-Sik;Kim, Byung-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.45-55
    • /
    • 2006
  • This paper presents the results of full-scale uplift load tests performed on 30 passive anchors grouted to various lengths at Taean site in Korea. Various rock types were tested, ranging from highly weathered to sound gneiss. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of $1{\sim}4m$. The majority of installations used SD4O-D51 no high grade steel rebar to induce rock failure prior to rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. The test results, the failure mechanisms as well as uplift capacities of rock anchors depend mostly on rock type and quality, embedded fixed length, and the strength of rebar. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined.

Applicability of the single shell tunnel in Korea from the economic evaluation (경제성 분석에 의한 싱글쉘 터널의 국내 적용성 검토 연구)

  • Kim, Hak-Joon;Shin, Hyu-Seong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.167-175
    • /
    • 2008
  • The construction cost for the single shell tunnel is cheaper than that of the double shell tunnel according to the case studies performed in several domestic and foreign tunnels. However, the economic advantage of single shell tunnel drops drastically as the condition of the rock mass deteriorates. Therefore, the single shell tunnelling method should be applied to the good rock mass conditions. The application of the single shell tunnelling method to tunnels in Korea should be determined considering the ratio between the good rock and poor rock masses along the tunnel section. The use of the single shell tunnel is expected to offend depending on the cheap supply of high quality shotcrets and rock bolts developed for single shell tunnels.

  • PDF

Characteristics of Natural and Experimental Fracture Propagation in Rocks (암석 내의 자연균열과 인공균열의 진행특성)

  • 백환조
    • The Journal of Engineering Geology
    • /
    • v.7 no.1
    • /
    • pp.53-62
    • /
    • 1997
  • Fracture mechanics properties of rock materials can he applied to predict the distribution of natural fractures in rock masses, and also to assess the safety of rock slopes and underground structures. In this study, rock fracture toughness and other fracture rrechanics properties of sorne lithologies showing apparently rock-property-controlled distribution of natural fractures were measured. Propagation behaviors of natural and experirnental fractures were also characterized both qualitatively and quantitatively, in terns of the propagation types and sorne statistical parameters. It was concluded that the application of fracture mechanics theories to the ge6logic materials should be based on the geological background and evidences.

  • PDF

Stability Analysis of a Jointed Rock Slope with the Barton-Bandis Joint Constitute Model Using UDEC (Barton-Bandis joint model을 이용한 절리 암반 사면의 안정성 해석)

  • 최성웅;정소걸
    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.141-148
    • /
    • 1999
  • Distinct element simulation in jointed rock masses is largely dependent upon the joint constitutive equation used. This paper describes the differences between the Barton-Bandits (BB) and the Mohr-Coulomb (MC) joint constitutive models for the stability analysis of the jointed rock slopes. The BB model, which allows the modelling of the dilation accompanying shear, predicts results very similar to the present condition of slopes. Consequently the 10 cm thick shotcrete was proposed for the reinforcement of those slopes. The MC model, however, in which the dilation angle is constant, is relatively insensitive to the behaviors of joints.

  • PDF

Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.235-245
    • /
    • 2019
  • This paper presents a novel methodology for face stability assessment of rock tunnels under water table by combining the kinematical approach of limit analysis and numerical simulation. The tunnels considered in this paper are excavated in fractured rock masses characterized by the Hoek-Brown failure criterion. In terms of natural rock deposition, a more convincing case of depth-dependent mi, GSI, D and ${\sigma}_c$ is taken into account by proposing the horizontally layered discretization technique, which enables us to generate the failure surface of tunnel face point by point. The vertical distance between any two adjacent points is fixed, which is beneficial to deal with stability problems involving depth-dependent rock parameters. The pore water pressure is numerically computed by means of 3D steady-state flow analyses. Accordingly, the pore water pressure for each discretized point on the failure surface is obtained by interpolation. The parametric analysis is performed to show the influence of depth-dependent parameters of $m_i$, GSI, D, ${\sigma}_c$ and the variation of water table elevation on tunnel face stability. Finally, several design charts for an undisturbed tunnel are presented for quick calculations of critical support pressures against face failure.

A Study on the Characteristics of Rock Mass by GSI in Limestone Mine (석회석 광산에서의 GSI 분류법에 의한 암반특성연구)

  • ;Kaynnam U. M. Rao
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.86-96
    • /
    • 2004
  • Rock mass classification methods such as RMR, Q system and GSl have been widely adopted with certain modifications for the design of mine openings. The GSI system is the only rock mass classification system that is related to Mohr-Coulomb and Hoek-Brown strength parameters and gives a simple method to calculate the engineering properties of rock masses which can be useful input parameters for a numerical analysis. A detailed surveying for GSI mapping as well as far calculating RMR values was undertaken at Daesung and Pyunghae underground limestone mining sites. RQD values were determined for row locations in these two mining sites. Based on GSI values and intact rock strength properties, the rock mass strength modulus of elasticity as well as the Mohr-Coulomb strength parameter c$_{m}$ and $\phi$$_{m}$ were determined. GSI and RMR are correlated.

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

Characterization of Fracture Transmissivity for Groundwater Flow Assessment using DFN Modeling (분리단열망개념의 지하수유동해석을 위한 단열투수량계수의 정량화 연구)

  • 배대석;송무영;김천수;김경수;김증렬
    • The Journal of Engineering Geology
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 1996
  • The fracture transmissivity($T_f$) is the most important parameter of fracture in assessing groundwater flow in fractured rock masses by using the DFN(Discrete Fracture Network) modeling. $T_f$, the most sensitive parameter m DFN modeling, is dependent upon aperture, size and filling characteristics of each fracture set. In the field test, the accuracy of $T_f$ can be increased with Borehole Acoustic Scanning (Televiewer) and Fixed Interval Length(FIL) test in constant head. $T_f$ values measured from FIL test was modified and estimated by each fracture set on the basis of the Cubic Law and the information of aperture and filling characteristics obtained from Televiewer. The modified $T_f$ results in the increase of confidence and reliability of modeling results including the amount of tunnel inflow.And, this approach would reduce the uncertaintity of the assessment for groundwater flow in fractured rock masses using the DFN modeling.

  • PDF

Development of an Artificial Neural Network Expert System for Preliminary Design of Tunnel in Rock Masses (암반터널 예비설계를 위한 인공신경회로망 전문가 시스템의 개발)

  • 이철욱;문현구
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.79-96
    • /
    • 1994
  • A tunnel design expert system entitled NESTED is developed using the artificial neural network. The expert system includes three neural network computer models designed for the stability assessment of underground openings and the estimation of correlation between the RMR and Q systems. The expert system consists of the three models and the computerized rock mass classification programs that could be driven under the same user interface. As the structure of the neural network, a multi -layer neural network which adopts an or ror back-propagation learning algorithm is used. To set up its knowledge base from the prior case histories, an engineering database which can control the incomplete and erroneous information by learning process is developed. A series of experiments comparing the results of the neural network with the actual field observations have demonstrated the inferring capabilities of the neural network to identify the possible failure modes and the support timing. The neural network expert system thus complements the incomplete geological data and provides suitable support recommendations for preliminary design of tunnels in rock masses.

  • PDF