• Title/Summary/Keyword: Rock mass rating

Search Result 82, Processing Time 0.019 seconds

REVALUATION OF (지공학적 암반분류의 재평가)

  • 김교원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.03a
    • /
    • pp.33-40
    • /
    • 1993
  • The Bieniawski's geomechanics classification system(1984) is widely employed as a tool of engineering evaluation of rock masses for tunnel design. Since the siz parameters adoped in the system are believed to control the engineering behavior of rock mass under an external load, no question may be raised to the conceptional idea immanent in the system. However, the rating grade for each individual parameter given in the system may be properly measured since an engineering property of rock mass is not stepwise changed but continuously changed. In order to get the proper rating grade based upon the continuously changed properties in each parameter, several equations presented in this paper are obtained through regration analyses with the grades and median values of properties givne in the system. A FORTRAN computer program given in the paper could provide not only RMR value but also rock mass properties (E, c, o, v, etc.) using the empirical equations.

  • PDF

Estimation of Tunnel Convergence Using Statistical Analysis (통계처리를 활용한 터널 내공변위의 분석에 관한 연구)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.108-116
    • /
    • 2003
  • Measured convergence data of a tunnel were investigated by means of statistical and regression analysis, where the rock mass were mainly composed of andesite and granite. The rock mass around tunnel were classified by RMR method into five different ratings, and then convergence data which belong to individual ratings were statistically processed to find out the appropriate regression equations. Exponential equations were better coincided with measured data than logarithmic equations. As the number of rock mass rating was increased, the magnitude and standard deviation of convergence were increased. Final convergence data were also investigated to study the relevance with both maximum displacement rate and early measured convergence. Some brief results of their relevance are presented. For instance, the regression coefficient between final convergence and maximum displacement rate was turned out to be 0.87 for this studied tunnel.

Comparison of Rock Mass Classification Methods (암반등급 분류법들의 비교연구)

  • Park Chul-Whan;Park Chan;Synn Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.203-208
    • /
    • 2006
  • This report is to introduce an article to compare 3 kinds of methods as RMR, Q-system and RMi published in Tunnel and Tunnelling Technology 2003. As rock mass classification is applied to estimate the amount of the support as an empirical design method, an attempt has been made to evaluate the parameters for classifications and their variations by Professor Nilsen and his team in Norway. Representability and reproducibility in measuring the field parameters are discussed and sensitivity of rating values in the three methods is also analyzed in this research. Although some parameters have high variation in rating among the 5 observers, the rock mass class has been found to be quite similar.

Critical review of RMR and Q-system of rockmass classification for the design of underground openings

  • Rao, Karanam U M;Choon, Sun-Woo;Chung, So-Keul;Choi, Sung-O
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2004.04a
    • /
    • pp.219-229
    • /
    • 2004
  • In this article a comprehensive review of the Rock Mass Rating and Q-rockmass classification systems is made with reference to their scope with in the constraints of underground mining operations. The modifications suggested by KIGAM for both the RMR and Q for the calculation of a safe unsupported span were tested for Daesung and Pyunghae underground limestone mines. Even though the suggested modifications were site specific, the additional parameters considered in the above classification systems are very significant for a design of stable underground openings, considering any general mining conditions.

  • PDF

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

Permanent Support for Tunnels using NMT

  • Barton, Nick
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.1-26
    • /
    • 1995
  • Key aspects of the Norwegian Method of Tunnelling (NMT) are reviewed. These include a predictive method of support design using the six-parameter Q-system of rock mass characterisation. The rock mass rating or Q-value is updated during tunnel driving. The designed tunnel support generally consists of wet process, steel fibre reinforced shotcrete combined with fully grouted, untensioned rock bolts, Even in poor rock conditions S(fr) + B usually acts as the final rock reinforcement and tunnel lining. Since it is a drained lining, it is very economic compared to cast concrete with membranes. Light, free-standing steel liners are used to prevent water affecting the runnel environment. Rock mass conditions, and hence lining design and cost estimation can be assessed by careful use of seismic surveys. Relationships between the P-wave velocity, the rock mass deformation modulus and the Q-value have recently been established, where tunnel depth, rock porosity and the uniaxial compression strength of the rock are important variables. The rock mass modulus estimate, and simple index testing of the joints, provide the key input which joints are discretely represented (either in two dimensions with the UDEC code or in three dimensions with the 3DEC code) is generally favoured compared to continuum analysis. The latter may give a misleading impression of uniformity and deformations tend to be understimated. Q-system NMT designs of S(fr) + B (fibre reinforced shotcrete and bolting) are numerically checked and adjustments made to bolt capacities and shotcrete thickness if overloading is evident around the modelled profile.

  • PDF

Evaluation of the Standard Support Pattern in Large Section Tunnel by Numerical Analysis and Field Measurement (수치해석 및 현장계측에 의한 대단면 터널 표준지보패턴의 적정성 검증)

  • Byun, Yoseph;Chung, Sungrae;Song, Simyung;Chun, Byungsik;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.5-12
    • /
    • 2011
  • When choosing the support pattern of tunnel, the characteristics of rock are identified from the result of the surface geologic survey, boring, and geophysical prospecting and laboratory test. And a rock mass rating is classified and excavation method and standard support pattern are designed considering rock classification, domestic and international construction practices, numerical analysis. According to the revised design standard for tunnel, it was recommended to classify the rock mass rating for the design of tunnel into a rating based on RMR. If necessary, it proposed a flexible standard allowed applying more atomized the rock mass rating and Q-System. Also, the resonable verification of the support pattern must be accompanied because the factors affecting the structure and behavior of ground during the construction of tunnel are the main factors of uncertainty factors such as the nature of ground, ground water and the characteristics of structural materials. These days, such verification method is getting more specialized and diversified. In this study, the empirical method, numerical analysis and comparative analysis of in situ measurements were used to prove the reasonableness in the support pattern by RMR and Q-value on the Imha Dam emergency spillway.

A Study on Relationship Between RMR and Q System in Rock Mass Classification (암반분류에서 RMR과 Q System의 상관성 분석)

  • 안종필;박주원;박상도
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.737-744
    • /
    • 2000
  • This paper resorts to rock mass rating and rock mass quality to draw value based on the evaluation of rock and to draw interrelation formula in relation to rock mass quality, A comparative analysis was given of survey values reported in the existing documents. This paper has tried to find out the relationship between RMR and Q System for the sake of choosing rational reinforcing patterns and of the safety of tunnels. The results run as follow: RMR=8.251n(Q)+43.83. This paper has also tried to find out the relationship between RMR and Q System by using Fuzzy Approximate Reasoning Concept. We suggest that those in charge should not depend on a single system only after evaluating the classification of rocks, and compare one result with another for the good of keeping track of the condition of base rocks in a better way.

  • PDF

A study on asymmetric load on circular shaft due to engineering characteristics of discontinuous rock masses (불연속암반의 공학적 특성에 따른 원형수직구 편하중에 관한 연구)

  • Shin, Young-Wan;Moon, Kyoung-Sun;Joo, Kyoung-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.119-128
    • /
    • 2008
  • In the case of a circular shaft, it is expected that asymmetric loads should apply on the surface rather than symmetric loads due to geographical factors and the non-homogeneity of the jointed rock masses. In this study, discontinuous numerical analysis was carried in order to analyze the characteristics of asymmetric load distribution on the wall of the circular shaft due to anisotropy caused by heterogeneity of rock masses affected by the discontinuities like as a Joint. And it was also analyzed that the effect of the mechanical properties varied with the rock mass rating and horizontal stress with depth had influence in the asymmetric load on the wall of the shaft. In the case of considering the effect of the joint as variable, asymmetric load ratio $(R_p)$, which was defined as the ratio of the load subtracted minimum from maximum to minimum, was below 25% in the hard rock. As regarding the variation of the rock mass rating with depth as variable, the value of $R_p$ was below than 25% in the hard rock, and the value between 30% and 40% in the soft rock. On the other hand, the $R_p$ of fractures rock was between $45{\sim}50%$ which value was much higher than that in better rock mass rating.

  • PDF