• Title/Summary/Keyword: Rock ground

Search Result 1,052, Processing Time 0.023 seconds

Prediction of rock fragmentation and design of blasting pattern based on 3-D spatial distribution of rock factor

  • Sim, Hyeon-Jin;Han, Chang-Yeon;Nam, Hyeon-U
    • 지반과기술
    • /
    • v.3 no.3
    • /
    • pp.15-22
    • /
    • 2006
  • The optimum blasting pattern to excavate a quarry efficiently and economically can be determined based on the minimum production cost, which is generally estimated according to rock fragmentation. Therefore, it is a critical problem to predict fragment size distribution of blasted rocks over an entire quarry. By comparing various prediction models, it can be ascertained that the result obtained from Kuz-Ram model relatively coincides with that of field measurements. Kuz-Ram model uses the concept of rock factor to signify conditions of rock mass such as block size, rock jointing, strength and others. For the evaluation of total production cost, it is imperative to estimate 3-D spatial distribution of rock factor for the entire quarry. In this study, a sequential indicator simulation technique is adopted for estimation of spatial distribution of rock factor due to its higher reproducibility of spatial variability and distribution models than Kriging methods. Further, this can reduce the uncertainty of predictor using distribution information of sample data. The entire quarry is classified into three types of rock mass and optimum blasting pattern is proposed for each type based on 3-D spatial distribution of rock factor. In addition, plane maps of rock factor distribution for each ground level are provided to estimate production costs for each process and to make a plan for an optimum blasting pattern.

  • PDF

Basic properties survey report on the rock classification (암반 등급분류를 위한 기초 물성조사 보고서)

  • Huh, Ginn
    • Journal of the Korean Professional Engineers Association
    • /
    • v.24 no.3
    • /
    • pp.43-50
    • /
    • 1991
  • On the ground foundation works for Bldg site, Rock classification test can be obtained as follows due to the International Society for Rock Mechanics. 1. In-take test ; Compression strength, Point load test. 2. In-situ test : Schmidt hammer test. Burden test finaly the convinient co-relation table between strength and S.H. test were carried out for site-engineer. This project is one of contineous works regarding to Burden test from Jack leg drill( ø 36mm) to Crawler drill( ø 75mm) use.

  • PDF

Basic properties survey report on the rock classification (암반 분류 기초 물성조사)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.9 no.3
    • /
    • pp.10-16
    • /
    • 1991
  • On the ground foundation works for Bldg site, Rock classification test can be obtained as follows due to the International Society for Rock Mechanics. 1. In-situ test : Compressive strength, Point load test. 2. In-situ test Schmidt hammer test. Burden test finaly the convinient co-relation table between strength and 5. H, test were carried out for site-engineer, This project is one of contineous works regarding to Burden test from Jack leg drill($\phi{\;}75mm$) use.

  • PDF

블록반응곡선을 이용한 불연속 암반내 공동에 대한 지보설계에 관한 연구

  • 이영주;이희근
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.41-47
    • /
    • 1995
  • NATM공법에서 지보는 주로 암반반응곡선(Ground Reaction Curve, GRC)상에서 설계된다. 그러나 GRC는 유도과정에서 많은 가정을 지니고 있어 시공에 직접 반영하기에는 많은 한계를 지닌다. 특히 과지압에 의한 소성거동의 문제가 심각하지 않고, 암반의 거동이 불연속면에 영향을 많이 받는 지역에서는 GRC의 가정 중에 하나인 등방 연속체라는 가정은 큰 결점 중의 하나이다. (중략)

  • PDF

Experiments on Interfacial Properties Between Ground and Shotcrete Lining (지반과 숏크리트 라이닝의 인터페이스 특성에 관한 실험적 연구)

  • Chang, Soo-Ho;Lee, Seok-Won;Bae, Gyu-Jin;Choi, Soon-Wook;Park, Hae-Geun;Kim, Jae-Kwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.407-414
    • /
    • 2004
  • Interfacial properties between rock mass and shotcrete play a significant role in the transmission of loads from the ground to shotcrete. These properties have a major effect on the behaviours of rock mass and shotcrete. They, however, have merely been assumed in most of numerical analyses, and little care has been taken in identifying them. This paper aimed to identify interfacial properties including cohesion, tension, friction angle, shear stiffness, and normal stiffness, through direct shear tests as well as interface normal compression tests for shotcrete/rock cores obtained from a tunnel sidewall. Mechanical properties such as compression strength and elastic modulus were also measured to compare them with the time-dependent variation of interfacial properties. Based on experiments, interfacial properties between rock and shotcrete showed a significant time-dependent variation similar to those of its mechanical properties. In addition, the time-dependent behaviours of interfacial properties can be well regressed through exponential and logarithmic functions of time.

  • PDF

Case Study of a Shallow Tunnelling Through Complex Strata of Sand-Gravel and Rock Mass (모래자갈과 암반의 복합지층에 시공한 저심도 터널의 사례연구)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.244-254
    • /
    • 2015
  • The tunnel is excavated through the alluvial layer composed of sand and gravel with groundwater deposited on rock. A portion of upper part of the tunnel is located in the alluvial layer and there are several buildings just above the curved section of the tunnel. It is necessary to prevent from sand-flowing into the tunnel due to low strength of the alluvial, high groundwater level and shallow depth of the tunnel from the ground surface. For this, the alluvial around the tunnel is pre-reinforced by umbrella arch method with multi-stage grouting through large diameter steel pipes or jet grouting before excavating the tunnel. The effect of the pre-reinforcement of the tunnel and the safety of the buildings are monitored by measurement of ground deformation occurred during tunnelling.

An analytical solution for buckling failure of rock slopes based on elastoplastic slab theory

  • Zhihong Zhang;Pengyu Wu;Fuchu Dai;Renjiang Li;Xiaoming Zhao;Shu Jiang
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Buckling failure is one of the classical types of catastrophic landslides developing on inclination-paralleled rock slopes, which is mainly governed by its self-weight, earthquake and ground water. However, nearly none of the existing studies fully consider the influence of slope self-weight, earthquake and ground water on the mechanical model of buckling failure. In this paper, based on energy equilibrium principle and elastoplastic slab theory, a thorough mechanical analysis on bucking slopes has been carried out. Furthermore, an analytical solution for slip bucking failure of rock slopes has been proposed, which fully considers the effect of slope self-weight, seismic force and hydrostatic pressure. Finally, the methodology is used to conduct comparative analysis with other analytical solutions for three practical buckling studies. The results show that the proposed approach is capable of providing a more accurate and reasonable evaluation for stability of rock slopes with potential buckling failure.

A Study on the Rock Loads of NATM Tunnel Concrete Lining (NATM 터널 콘크리트라이닝 암반하중 산정방법 고찰)

  • 천병식;박태수;신영완
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.89-96
    • /
    • 2001
  • A concrete lining of NATM tunnel is the final product of a process that involves planning and evaluation of user needs, geotechnical investigations, analysis of ground-lining interaction, construction, and observations and modifications during construction. The designer must consider the lining in context of the many function, construction, and geotechnical requirements. Also, the loss of supporting capacity of shotcrete lining due to poor rock qualities and shotcrete erosion must be considered. The values, shapes, and estimating methods of rock load and water pressure are very different with every designers. Estimating methods of rock loads used in the design of NATM tunnel concrete lining are investigated. Numerical analyses are done in various conditions. And the rock loads estimated from radial stress and plastic zone are compared respectively.

  • PDF

Improvement Effect and Field Application of Dynamic Replacement Using Crushed Rock (암버력 매립층의 동치환공법 현장 적용성 및 개량효과에 관한 연구)

  • Lee, In-Hwan;Lee, Chul-Hee;Shin, Eun Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • The purpose of this study is to examine the effect of soft ground improvement by dynamic replacement with utilizing crushed rock. In order to understand the ground improvement effect when applying dynamic replacement method with crushed rock, the laboratory test and field test were performed. The internal friction angle and apparent cohesion were derived through direct shear test. The dynamic replacement characteristics were identified by analyzing the weight, drop, and number of blows needed for dynamic replacement. Through the field plate bearing test and density test, the bearing capacity and settlement of the improved ground were measured, and the numerical analysis were conducted to analyze the behavior of the improved ground. In this study, it proposes modified soil experimental coefficient(CDR) to 0.3~0.5 in the dynamic replacement method with crushed rock. Also when applying the dynamic replacement method using crushed rock, the particle size range is less than 100 mm, D90 is less than 80 mm and D15 is more than 30 mm.

A Study on Concrete Lining Stress Changes Considering Load Supporting Capacity of Primary Supports of NATM Tunnel (NATM 터널에서 1차지보재의 지보압을 고려한 콘크리트라이닝 응력변화에 관한 연구)

  • Jeon, Sang Hyun;Shin, Young Wan;Yoo, Han Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.147-154
    • /
    • 2011
  • Currently NATM tunnels are designed by applying the initial ground loads caused during construction to the primary supports, conisting of shotcrete, steel ribs and rock bolts. For long term considerations, it is assumed that the primary supports lose its functionality and therefore the secondary support, i.e. concrete lining, is design to resist against the entire ground loads. But the steel ribs, usually applied to bad ground conditions, are embedded in shotcrete causing very little corrosion and therefore the assumption that the primary support will lose all of its functionality is too conservative. Also even though shotcrete carbonates in long term, excluding it from design is also too conservative. In this study, we have, through analytical and numerical analysis, set a rational level of support pressure and allowable relaxed rock mass height sustainable by the primary support for long term design. Changes in sectional forces of the concrete lining considering the calculated support pressure of the primary supports was also carried out. Shallow subway tunnels were considered in the analysis with weathered rock and soft rock ground conditions. The analysis results showed that, by considering the support pressure of steel ribs, an economical design of the concrete lining is possible.