• Title/Summary/Keyword: Rock fracture

Search Result 546, Processing Time 0.023 seconds

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.

Effect of Formation of Segmented Fractures Induced by Fluid Injection on Major Design Parameters (수압파쇄균열의 분할생성 시 주요 설계변수에 대한 영향)

  • Sim, Young-Jong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.125-133
    • /
    • 2009
  • Rock fracturing technique through fluid injection into the wellbore has been widely used to extract geothermal heat and to enhance oil and gas production. Single fracture formation is ideal for the production. However, it is very difficult to form single fracture formation. Instead, the formation of segmented fracture is a common phenomenon. Therefore, design parameters are expected to be different from those of single fracture because of mechanical interaction between segmented fractures. In this paper, design parameters such as length, aperture, and net pressure are evaluated by using model of segmented fracture in which numerical technique is incorporated to consider mechanical interaction between segments. Results show that the existence of fracture segmentation affects design parameters in fracturing treatment in rock by fluid injection.

  • PDF

Study on the Fracture Deformation Characteristics in Rock by Hydraulic Fracturing (수압파쇄에 의한 암반 균열의 변형 특성 연구)

  • Sim, Young-Jong;Kim, Hong-Taek;Germanovich, Leonid N.
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.43-53
    • /
    • 2006
  • Hydraulic fracturing is an important and abundant process in both industrial applications and natural environments. The formation of hydraulic fractures includes nucleation, growth, and termination in numerous rock types and stress regimes, at scales ranging from microns to many kilometers. As a result, fracture segmentation, commonly observed at all scales and in all geo-materials, contributes to this complexity in many ways. In particular, the mechanical interaction of fracture segments strongly affect almost all hydraulic fracturing processes. In this paper, the segmented fracture opening deformation in rock by hydraulic fracturing is quantified using boundary collocation method and is compared with non-interacting single fracture.

  • PDF

Sensitivity Analyses of Three-Dimensional Discrete Fracture Network Modeling of Rock Mass (암반의 3차원 불연속균열망(DFN)에 관한 연구 및 민감도분석)

  • Park, Jung Chan;Park, Seung Hun;Kim, Ha Yung;Kim, Geon-Young;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.341-358
    • /
    • 2015
  • This study analyzes the relationship between parameters of the discontinuity in Discrete Fracture Network model such as fracture intensity, fracture orientation, fracture size, fracture shape etc. In this paper, FracMan code was used to model and analyze 3D DFN. A sensitivity analysis was performed in order to analyze the relationship between linear fracture intensity measure ($P_{10}$) and parameters of the discontinuity in $100m{\times}100m{\times}100m$ model area. As a result the sensitivity analysis showed that key parameters affecting fracture intensity are fracture orientation (Trend / Plunge). Conversion factor($C_{13}$) for $P_{10}$, to calculate volumetric fracture intensity measure ($P_{32}$), is derived in case of vertical well and horizontal well when trend is $10^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$, $150^{\circ}$, $180^{\circ}$ (7cases) and plunge is $5^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, $85^{\circ}$ (7cases). It is expected that this paper can be used effectively for modeling and understanding DFN model.

Time-dependent Reduction of Sliding Cohesion due to Rock Bridges along Discontinuities (암석 브리지에 의한 불연속면 점착강도의 시간의존성에 관한 연구)

  • 박철환;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • This paper is to introduce an article published in Rock Mechanics and Rock Engineering, 2003. In this research, a fracture mechanics model is developed to illustrate the importance of time-dependence far brittle fractured rock. In particular a model is developed fer the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of intact patches or rock bridges along the joint surface. A fracture mechanics model is developed utilizing subcritical crack growth, which results in a closed-form solution for joint cohesion as a function of time. As an example, a rock block containing rock bridges subjected to plane sliding is analyzed. The cohesion is found to continually decrease, at first slowly and then more rapidly. At a particular value of time the cohesion reduces to value that results in slope instability. A second example is given where variations in some of the material parameters are assumed. A probabilistic slope analysis is conducted, and the probability of failure as a function of time is predicted. The probability of failure is found to increase with time, from an initial value of 5% to a value at 100 years of over 40%. These examples show the importance of being able to predict the time-dependent behavior of a rock mass containing discontinuities, even for relatively short-term rock structures.

Numerical Study on the Characteristics of Fracture Growth in Fracture Controlled Blasting using Notched Blasthole (노치성형 발파공을 이용한 균열제어 발파방법의 균열발생 특성에 대한 수치해석적 고찰)

  • 백승규;김재동;류창하;임한욱
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1999.03a
    • /
    • pp.41-50
    • /
    • 1999
  • 발파는 토목, 건설현장이나 광산 등에서 암반에 대한 굴착 방법으로서 가장 널리 쓰이고 있는 방법중의 하나이다. 그러나 최근 들어 발파에 의한 진동이나 소음 등의 위해가 사회적 문제로까지 대두하고 있으며, 또한 발파작업에서 작업계획에 대한 결과의 정밀도를 높이기 위하여 조절발파 등 여러 가지 방법들이 연구 발전되어 가고 있는 추세에 있다. 이러한 연구들은 주로 현장 발파작업 및 발파패턴의 설계에 치중되어 있으며 발파모델을 이용한 해석 연구는 다소 미진한 정도이다. (중략)

  • PDF

Characteristics of Fracture System of the Upper Devonian Grosmont Formation, Alberta, Canada (캐나다 앨버타 상부 데본기 Grosmont층의 불연속면 구조 특성)

  • Um, Jeong-Gi;Kim, Min-Sung;Choh, Suk-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.790-799
    • /
    • 2010
  • The Upper Devonian Grossmont Formation in Alberta, Canada reserves an estimated 50 billion cubic meters of bitumen and possess about 1/6 of the total bitumen resources in northern Alberta. However, unlike the overlying Athabasca oil sands, non conventional bitumen resources has not been developed as yet. The carbonate rocks of Grosmont Formation have been subject to various stages of diagenesis, including dolomatization and karstification with a strong effect on the distribution of porosity and permeability, which resulted in highly heterogeneous reservoirs. An extensive fracture logging and mapping was performed on total of six boreholes located in the study area to explore the characteristics of fracture geometry system and the subsurface structures of carbonates reservoir that holds bitumen. Fractal dimension was used as a measure of the statistical homogeneity of the fractured rock masses. The applicability of random Cantor dust, Dc, as a fractal parameter was examined systematically. The statistical homogeneity of fractured carbonates rock masses was investigated in the study area. The structural domains of the rock masses were delineated depthwise according to estimated Dc. The major fracture orientation was dominated by horizontal beddings having dip of $0-20^{\circ}$. Also, fractures having high dip angles existed with relatively low frequency. Three dimensional fracture network modeling for each structural domain has been performed based on fracture orientation and intensity, and some representative conceptual models for carbonates reservoir in the study area has been proposed. The developed subsurface conceptual models will be used to capture the geomechanical characteristics of the carbonates reservoir.

  • PDF

A Study of the Influence of Roughness on fracture Shear Behaviour and Permeability (거칠기가 절리의 전단거동 및 투수성에 미치는 영향에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.312-320
    • /
    • 2002
  • It is well-known that when single rock fractures undergo shear displacement, they are influenced by the boundary conditions and fracture roughness. In this case, aperture geometry will change by means of dilation due to the shear displacement. As fractures become the flow paths, fluid flow through rock fractures is affected by the void geometry. In this study, therefore, the influence of roughness on shear behavior of fractures has been investigated, and the resulting hydraulic behavior has been analyzed. In order for this study, a statistical method has been used to generate rough fractures, and they have been adopted into new conceptual models fur fracture shearing and flow calculations. The main contributions of this study are as follows: firstly, fracture shear behavior becomes less brittle with decreasing fracture roughness and increasing normal stress. Then, the characteristics of aperture distribution becomes those of roughness of fractures indicating its hydraulic significance. Finally, it is observed that with decreasing fracture roughness the breakdown of channel flow occurs more slowly.

Analysis of Hydro-Fracturing Test Results Using a Mechanical Crack Model (파괴역학모델은 이용한 수압파쇄시험 결과의 해석에 관한 연구)

  • 최용근;배성호;박배한;이정인;전석원
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.237-247
    • /
    • 2001
  • In this study, the fracture mechanics model as well as the elastic model was reviewed theoretically and four field case studies were conducted to investigate the feasibility of fracture mechanics model for hydraulic fracturing test. There was a difference between the result by fracture mechanics model and the one by elastic model. And the smaller initial crack length is, the larger the difference is. It is considered that the fracture mechanics model can be applied to the specific case of which the crack length is known. In this study, the rock tensile strength is measured using fracture mechanics model, brazilian test and elastic model. The measured tensile strength by the fracture mechanics model is the largest and the elastic model is the smallest. This result is due to the size effect of the each test. And the tensile strength from the elastic model for hydraulic fracturing test can be used to estimate the in-situ rock tensile strength.

  • PDF

A Study on the Standard Rock fracture Method Using the Finecker Plus (미진동파쇄기를 이용한 표준암반반쇄굴착공법에 관한 연구)

  • Kim Young-Geun;Kim Il-Jung;Ki Kyung-Chul
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • In this study, the standard particle velocity equations and the equation for calculating specific charge weight with application of rock fracture method using the finecker plus are suggested and the existing equation of fragmentation was transformed into one applicable to finecker plus. Standard rock fracture pattern was designed. Square root scaled equation is $V=345.39(D/\sqrt{W})^{-1.4484$. computable equation to specific charge wei인t is $W_f=(2.3\~2.5)\;f_agdV$, charge weight per hole is 0.54kg, and proportion of diameter 30cm fragmentation is about $48.7\%$. This rock fracture method nay him out to be more excellent than the other methods.