In-situ survey and laboratory rock test were carried out for rating rock mass around the tunnel that some failures had been occurred in Danyang limestone quarry. For rating rock mass, several methods such as RMR, Q-system, rock strength etc. were applied. The stability analysis on tunnel was evaluated by numerical method FLAC. And The block theory using streographic projection was also applied for stability analysis. The 3-4 major discontinuity sets are distributed in rock mass around tunnel.
최근의 터널설계에 있어서 지보패턴 선정시 전기비저항탐사 결과를 효과적으로 황용하기 위하여 전기비 저항 역산결과와 암반분류와의 상관관계를 도출해 내고자 하는 시도가 이루어지고 있다. 그러나 전기비저항탐사결과를 고려한 예상지보패턴과 실제로 시공된 지보패턴 결과를 비교한 연구는 찾아보기 힘들다. 본 연구에서는 실제 터널굴진 상태에서 막장관찰에 기초한 암반분류 및 지보패턴 선정과 시공 전 수행한 전기비저항 탐사자료를 비교함으로씨 전기비저항 탐사 결과가 어느 정도의 신뢰도로 이용될 수 있는가를 살펴보고자 한다. 전기비저항 자료와 암반분류의 정량적인 상관성을 얻기 위하여 암반분류값으로 RMR(Rock mass rating)을 기본으로, RCR(rock condition rating), N(Rock mass number), Q-system 등을 이용하였다. 전기비저항탐사는 공간적 해상도가 낮기 때문에 후처리 과정으로 크리깅 기법을 사용하여 해상도를 향상시키고자 하였다. 상관도 분석 결과, 2차원 전기비저항탐사결과는 정성적인 경향을 살펴보는데 적합한 것으로 나타났다 3차원 전기비저항탐사 결과와의 상관관계는 매우 높은 것으로 나타나 신뢰도 높은 암반분류에 적용 가능하리라 예상된다.
Rock mass classifications have played an indispensable role in underground construction for several decades. An important issue in rock mass classifications is the selection of the parameters of greatest significance. There appears to be no single parameter that can fully describe a jointed rock mass for underground construction design. In this paper. We find some problems shen applied rock mass classification for underground construction in domestic, analyze the most significant parameters and parameters correlation influencing the behavior of a rock mass, and suggest the Simplied Rock Mass Rating system based on RMR method for effective underground supports.
본 연구에서는 터널 설계구간의 대부분을 차지하는 미시추 구간의 지반 등급 분류를 정량적으로 수행할 수 있는 새로운 접근방법을 제안한다. 본 제안방법은 시추공에서 얻은 직접조사 결과와 시추구간의 전기 비저항 탐사결과를 이용해 인공 신경망을 학습시카고, 학습된 인공 신경망은 미시추 구간의 암반분류 등급을 추론하는데 적용된다. 지반등급 추론은 미시추 구간 영역에서 움직이는 격자형 창(window)의 중심점에서 이루어 지며 창내 귀속된 전기 비저항들은 추론을 위한 참고자료로 시용된다. 인공 신경망 학습은 최선 RPROP(Resilient backpropagation) 인공 신경망 학습 알고리즘과 early-stopping 기법을 이용하여 수행되었다. 본 연구에서는 실제 시추조사가 이루어진 터널현장에 제안기법을 적용하여 미시추 구간의 지반 등급을 추론하였으며, 전통적인 지구통계학적 크리깅(kriging) 기법에 의한 결과와도 상호 비교하였다. 결과적으로 본 연구를 통해 학습된 인공 신경망은 전통 크리깅 방법에 비해 매우 구체적이고 현실적인 예측결과를 제공하였다 또한, 인공 신경망 추론으로부터 얻어진 터널 종단 방향의 RMR과 Q-값의 분포에서는 전기 비저항 탐사로부터 추정된 취약지반 구간의 위치와 잘 일치하였으며, 두 값 상호간의 관계도 선행 연구 결과와 부합하였다.
암석 분류에 필요한 인적, 시간적 소모를 최소화하기 위해 최근 인공지능을 활용한 암석 분류 연구가 대두되었다. 이에 본 연구에서는 편광현미경 박편 이미지를 활용하여 염기성 화산암을 세분류하고자 하였다. 분류에 사용된 인공지능 모델은 Tensorflow, Keras 라이브러리를 기반으로 합성곱 신경망 모델을 자체 제작하였다. Olivine basalt, basaltic andesite, olivine tholeiite, trachytic olivine basalt 기준시료 박편을 개방 니콜, 직교 니콜, 그리고 gypsum plate를 장착하고 촬영한 이미지 총 720장을 인공지능 모델에 training : test = 7 : 3 비율로 학습시켰다. 학습결과, 80~90%이상의 분류 정확도를 보였다. 각각의 인공지능 모델의 분류 정확도를 확인하였을 때, 본 모델의 암석분류 방식이 지질학자의 암석 분류 프로세스와 크게 다르지 않을 것으로 예상된다. 나아가 본 모델 뿐 아니라 보다 다양한 암석종을 세분시키는 모델을 제작하여 통합한다면, 데이터 분류의 신속성과 비전문가의 접근성 모두를 만족시키는 인공지능 모델을 개발할 수 있으며, 이를 통해 암석학 기초연구의 새로운 틀을 마련할 수 있을 것으로 생각된다.
본보는 터널전문지에 게재된 RMR과 Q, RMi 등의 3개의 암반분류법을 비교한 논문을 소개하는 것이다. 암반 분류법은 경험적 방법으로 지보설계에 적용되고 있는데, Nilsen 교수는 그의 연구팀과 함께 암반분류법의 변수들과 이들의 분산을 평가하는 연구를 시도하였다. 이 연구에는 현장의 여러 변수들을 평가하는데 요구되는 대표성과 반복성에 대하여 논하며, 또한 세가지 분류법에서 평점에 대한 민감성을 언급하고 있다. 비록 몇가지 변수들은 측정자에 따라 상당히 큰 측정편차를 갖고 있음에도 불구하고, 암반등급은 매우 유사한 것으로 평가퇴고 있음이 밝혀졌다.
터널 조사계획 혹은 공사중, RMR 및 Q분류법에 따라 암반분류를 수행하는데 있어 지하수조건에 대한 평가는 가능한 조건들의 제약 때문에 경험적 방법에 의존하고 있다. 절리 수압 및 지하수 유입량 측정, 수리전도도 모델 산정, 3차원 수치해석 및 해석해 방법을 사용한 대전 LNG Pilot Cavern의 결과를 바탕으로, 지하수 조건 평가에 관한 합리적인 접근 방법을 비교 검토하였다. 그 결과, Raymer(2001) 이론해 방법이 예비 조사단계에서 유용한 도구로 활용될 수 있음을 검증하였다.
This study was conducted to suggest develop revegetation methods and to classification of cutting-rock slopes revegetation type. The data was collected from pre-experienced data, reports and journal. Also research result was reflected from field research for the conditions of construction, vegetation types and field conditions. As the result of analyze, the factors affecting the plant coverage rates of cutting-rock slopes were period of construction, revegetation methods, slope gradient and slope length. Classification of cutting-rock slopes revegetation type was fourth from material of revegetation measures and spray type. It is recommended to adjust the proposed factor as environment, field condition and characteristic related with revegetation measures on slopes for the presentation of revegetation standard.
RMR 암반분류법은 구간별 RMR값 산정시 일정 범위의 값을 채택함으로 인해 불확정성을 피할 수 없다. 이에 본 연구에서는 각 파라미터별로 연속적인 RMR 값을 평가하여 확률밀도함수그래프를 산정하고 모든 경우의 수에 대한 몬테카를로 시뮬레이션과 통계추론을 통해 RMR 산정의 불확정성을 정량적으로 평가하였다. 또한 RMR 산정의 불확정성을 실무에 적용하기 위하여 신뢰수준별 수정 RMR 암반등급 산정표를 제시하였으며, 이를 근간으로 RMR 암반분류의 표준지보패턴 및 지보재 설계 수행절차를 제안하였다.
GSI, RMR Q와 같은 암반분류법들을 광산 갱도설계에 적용하기 위해서 수정을 통하여 사용하고 있다. GSI시스템은 Mohr-Coulomb과 Hoek-Brown 강도와 관련된 유일한 암반분류법이며 수치해석을 위한 입력자료로 사용될 수 있는 암반의 공학적 성질을 계산할 수 있는 간단한 방법을 제공하는 암반분류법이다. RMR값의 측정뿐 만아니라 GSI 대한 상세한 조사가 대성광업 제천광업소와 한국공항의 평해석회석 광산에서 수행되었다. 그리고 RMR과 Q시스템의 문제점에 대해서도 언급하였고 GSI를 근거로 하여 신선암의 강도, 암반의 강도, 탄성계수와 실험실의 Mohr-Coulomb의 강도상수인 c$_{m}$ 과 $\phi$$_{m}$ 을 결정하였다. 그리고 GSI와RMR의 상관관계에 대해서도 조사하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.